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These are a set of exercises I wrote while I was Super TA for Algebraic
Geometry at the University of Arizona to complement Andreas Gathmann’s
course notes (available online). I claim no originality on any of the exercises.
Some have references to where they come from, but I did not do a complete job
specifying their source. Some are general knowledge, some are theorems from
other books...There are also some that are questions I had that I never found a
satisfactory answer to.

1 First Set

1. (a) Show that a closed subset of an irreducible space may be reducible.

(b) Show that any non-empty open subset of an irreducible space is ir-
reducible and dense.

(c) Give an example of an open subset in a reducible space which is not
dense.

2. Show that a space X is irreducible if and only if any two non-empty open
sets intersect.

3. A Noetherian Hausdorff space must be a finite set of points. Source:
Hartshorne ex.I.1.5.

4. A Noetherian space is quasi-compact, i.e., any open cover has a finite sub-
cover. (It is not compact because the definition of compactness includes
the condition that the space be Hausdorff, and the exercise above shows
this rarely happens!) Source: Hartshorne ex.I.1.5

5. (a) Let k be algebraically closed. Find an f ∈ k[x1, . . . , xn] such that
Z(f) is irreducible even though f is reducible.

(b) If k is algebraically closed and f ∈ k[x1, . . . , xn] is a square-free poly-
nomial, show that Z(f) is irreducible if and only if f is irreducible.

(c) Give and example of polynomial f ∈ R[x, y] for which Z(f) is re-
ducible even though f is irreducible. Source: Hartshorne ex.I.1.12
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6. Let Y = Z(y2 − xz, yz − y) ⊆ A3. Show that Y is the union of three irre-
ducible components. Describe them and find their prime ideals. Source:
Hartshorne ex.I.1.3.

7. Decompose into irreducible components the closed set Z(y2−xz, z2−y3).
Source: Shafarevich p. 40.

8. The curve X = {(t, t2, t3) | t ∈ k} ⊆ A3 is called the twisted cubic.

(a) Find generators for the ideal of X.

(b) Show that X is one dimensional.

9. Show that if k is not algebraically closed, then any closed subset X of An
is a hypersurface (i.e., X = Z(f) for some f). Source: Doug Ulmer.
Hint: Show that for any m there is a gm ∈ k[t1, . . . , tm] such that

gm(a1, . . . , am) = 0 iff (a1, . . . , am) = ~0.

Start with m = 2.

10. (Finite sets are complete intersections) Let X ⊆ An be a finite set. Show
that there are n polynomials such that X = Z(f1, . . . , fn). Source: Doug
Ulmer.

11. Show that any irreducible curve in A2 of degree 2 can be parametrized
by rational functions. This parametrization may be undefined at some
points, and may miss finitely many points (for example, the Weierstrass
substitution from calculus gives a parametrization of the circle).
Hint: Think about the lines through a point.
Hint: This won’t work in general for higher degree curves.

12. Show that if k is algebraically closed then any homogeneous polynomial
in two variables factors into linear factors.

13. Let k = C and C = Z(f) with f irreducible be a curve in A2. Let p ∈ C
be a point, and consider the family lines through p given parametrically
as

~r(t) = p+ t~v,

where ~v is a unit vector.

(a) Show that f(~r(t)) vanishes with the same order at t = 0 except for
finitely many ~v at which it vanishes with a higher order. We call this
minimun order the multiplicity of p in C, and we call the union of
the degenerate lines the tangent cone of C at p. For example:

• (0, 0) is a point of multiplicity 1 on (x− 1)2 + y2 = 1.

• (0, 0) is a point of multiplicity 2 on y2 = x3 and the tangent cone
at C is the line y = 0.
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(b) Show that p is a point of multiplicity 1 if and only if fx(p) and fy(p)
don’t both vanish at p. We call there points the smooth points of
p. Note that (0, 0) is not a smooth point of the curve y3 = x5 even
though there is no apparent singularity in the graph of the curve over
the real numbers.

(c) Show that at smooth points the tangent cone is a single line.

(d) Let p = (0, 0) and fm be homogeneous part of f of smallest degree.
Show that the tangent cone of C at p is the curve fm = 0 (a union
of lines by an exercise above).

14. Show that any reducible curve in A2 is singular.

2 Second Set

1. Show that C : xy = 1 ⊂ A2 is not isomorphic to A1.

2. At what points on the circle x2 + y2 = 1 ⊂ A2 is the rational function
(1− y)/x regular? Source: Shafarevich.

3. At what points of the curve C : y2 = x3 +x2 ⊂ A2 is the rational function
t = y/x regular? Show that y/x /∈ A(C). Source: Shafarevich.

4. Prove that any map of the form (x, y) 7→ (ax, by+ p(x)) with a, b 6= 0 and
p(x) ∈ k[x] is an automorphism of A2. Source: Shafarevich.

5. Which of the following are isomorphic over C? Source: Gathmann

(a) A1

(b) xy = 0 in A2.

(c) x2 + y2 = 0 in A2.

(d) y2 = x3 + x2 in A2.

(e) x2 = y3 in A2.

(f) Z(y − x2, z − x3) in A3.

6. Give as much information as you can about the stalks of the structure sheaf
at the origin in each of the examples above for which it makes sense (i.e.
for the ones that are irreducible!). Find a minimum number of generators
for the maximal ideal of each.

7. Show that any conic in A2 is isomorphic to either xy = 1 or y = x2 over
C (excluding the degenerate cases).

8. Go through all the details of example 2.2.3 in the text.
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9. Let X ⊂ An be an affine variety, and Y ⊂ X ⊂ An with Y closed and
irreducible in X. Show that if i : Y → X is the inclusion, then i∗ :
A(X) → A(Y ) is surjective. Therefore, regular functions on Y always
come from regular functions from X. Compare this to when Y is open in
X (for example Y = Xf for some f ∈ A(X)).

10. Let U be a domain of C and define

F (U) = {Complex Analytic functions fon U | zf ′(z) = 1}.

(a) Show that F is a sheaf on C with restriction of functions.

(b) Show that the stalk of F at z = 0 is empty, and any other stalk is
non-canonically isomorphic to C. Source: Kempf.

11. Let F be a presheaf on a topological space X, U and open set of X, and
let σ, τ ∈ F (U).

(a) Show that σp = τp in every stalk Fp for p ∈ U if and only if there is
an open cover U = ∪Uα such that σ |Uα= τ |Uα .

(b) Show by an example that σp = τp in every stalk Fp for p ∈ U does
not imply that σ = τ on F (U). Source: Kempf

12. Show that the zariski topology of A2 = A1×A1 is not the product topology
of the zariski topologies of the A1’s.

13. Show that A2 − {(0, 0)} is not an affine variety.

3 Third Set

1. Let f : X → Y be a morphism of varieties. Show that the preimage of
any Yg is an Xh. Shource: Shafarevich.

2. Let X be an affine variety. Show that Xf ∩ Xg is affine for every f, g ∈
OX(X).

3. Let φ : X → Y be a morphism of varieties.

(a) Show that φ induces a map in the stalks φ?p : OY,φ(p) → OX,p for all
p ∈ X.

(b) Show that φ is an isomorphism if and only if the following two con-
ditions hold:

• φ is a homeomorphism.

• φ?p is an isomorphism for every p ∈ X.

(c) Show that if the image of X is dense in Y then φ?p is injective for all
p ∈ X. Source: Hartshorne.
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4. Let X be a variety and U, V open subsets which are affine. Show that
U ∩ V is also affine. Source: Shafarevich.

Hint: Show that the map U ∩ V → X × X : u → (u, u) is a morphism
and use the fact that X is separated. (i.e. a prevariety which is a
variety).

5. Show that the image f(Pn × Pm) ⊂ PN of the Segre embedding is not
contained in any linear subspace of PN . Source: Shafarevich.

6. Show that any two curves in P2 intersect. Source: Hartshorne.

7. Prove that any morphism P1 → An is constant.

8. Show that an affine variety is complete if and only if it is one point.

9. Show that if k = C and X ⊂ Pn is closed, then Pn −X is path conected.
Source: Doug Ulmer. Hint: Start with n = 1.

10. Let X be a variety and p ∈ X. Show that there is a one to one correspon-
dence between the prime ideals of OX,p and the closed subvarieties of X
that contain p. Source: Hartshorne.

4 Fourth Set (on projections and points in gen-
eral position)

Definition 1 An automorphism Pn → Pn which is induced by a linear auto-
morphism of An+1 → An+1 is called a projective equivalence.

Two closed sets of Pn are said to be projectively equivalent if there is pro-
jective equivalence of Pn taking one to the other.

Definition 2 A collection of points {pi} ⊂ Pn is said to be independent if
the corresponding vectors in An+1 are linearly independent, and it is said to be
dependent otherwise.

A collection of points {pi} ⊂ Pn is said to be in general position if no
subcollection of n+ 1 of them is dependent.

1. Show that any two linear subspaces of Pn of the same dimension are
projectively equivalent.

2. Show that any two irreducible conics in P2 are projectively equivalent.
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3. Show that any collection of n+ 2 points in general position in Pn is pro-
jectively equivalent to the collection

p1 = [1 : 0 : . . . : 0]

p2 = [0 : 1 : . . . : 0]

...

pn+1 = [0 : 0 : . . . : 1]

pn+2 = [1 : 1 : . . . : 1]

4. Show that two collections of 4 = 1 + 3 points in P1 in general position
are projectively equivalent if and only if they have the same cross-ratio.
Source: Harris. Hint: Show that the cross ratio of p1, p2, p3, p4 is the
image of p4 under the projective equivalence of P1 taking p1, p2, p3 to
1,∞, 0 respectively.

5. Let p, q be distinct points in Pn. Show that the “parametric equation” for
the line pq through p and q is given by the map

P1 → Pn

[s : t] 7→ sp+ tq

6. Let H be an (n− 1)-dimensional linear subspace H of Pn (so H ∼= Pn−1),
and let p ∈ Pn a point which is not contained in H. The projection of Pn
from p to H is the map

πp : Pn − {p} → H

q 7→ pq ∩H

where pq is the line through p and q. Show that up to a projective equiv-
alence, the projection is given in coordinates by

[x0 : x1 : . . . : xn] 7→ [x0 : . . . : xn−1 : 0].

7. Let C be a smooth conic in P2. Show that the projection of P2 from a
point p ∈ C when restricted to C extends to an isomorphism C ∼= P1.

8. The twisted cubic is the closure in P3 of the parametric curve A1 → A3 :
x→ (x, x2, x3).

(a) Show the twisted cubic is the image the projective map

P1 → P3

[s : t] 7→ [s3 : s2t : st2 : t3]
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(b) Show that the image of any map

P1 → P3

[s : t] 7→ [p0(s, t) : p1(s, t) : p2(s, t) : p3(s, t)]

with the pi homogeneous polynomials of degree 3 is projectively
equivalent to the twisted cubic as long as the pi form a basis for
the vector space of homogeneous polynomials of degree 3.

(c) We use the term twisted cubic for any of the curves above. Show that
any finite set of points on a twisted cubic is in general position.

(d) Show that there is a unique twisted cubic in P3 through 6 points in
general position. Source: Harris.

5 Fifth Set

1. Let X ⊂ An be an affine variety and X ⊂ Pn be its projective closure.
Show that X does not contain the hyperplane at infinity.

2. Show that a line in Pn is either contained in the hypersurface of degree d,
or intersects it in exactly d points counting multiplicities.

3. Consider the following rational map from P2 to itself:

φ : P2 99K P2

[x : y : z] 7→ [yz : xz : xy]

(a) Find all the points where φ is not defined and where φ is not injective.

(b) Show that φ is its own inverse on an open subset of P2. Find the
maximal open subset where this happens.

4. Show that in the Segre embedding of P1 × P1 to P3 the sets {p} × P1 and
P1 × {p} get mapped to lines.

5. Let X be a closed subvariety of P1×P1 and let π1 and π2 be the projections
of P1 × P1 onto its factors. Show that π1(X) = π2(X) = P1 unless X is a
point or one of the lines of the rulings of P1 × P1. Source: Shafarevich.

6. Show that the homogeneous coordinate ring is not invariant under isomor-
phism by showing that even though X = P1 is isomorphic to a conic Y
in P2 by the Veronese embedding, the homogeneous coordinate rings of X
and Y are not isomorphic. Source: Hartshorne.

7. Show that any degree 2 hypersurface in Pn is projectively equivalent to the
hypersurface defined by x20 +x21 + . . .+x2k = 0 for some unique 0 ≤ k ≤ n.

8. Let PN be the projectivization of the vector space of homogeneous degree
d polynomials in x0, . . . , xn. Show that the reducible degree d polynomials
are a closed set of this PN .

7



9. (a) Show that one can map any set of three non-intersecting lines to any
other set of non-intersecting lines in P3 using a linear transformation.

(b) Show that given three non-intersecting lines L1, L2, L3 in P3, the
union of the lines in P3 intersecting the three lines is a smoth quadric
surface in P3. Hint: Think of the Segre embedding of P1 × P1 and
three line on one ruling. Use Bezout.

(c) Show that there are exactly two lines through any point p on a smooth
quadric S in P3. Hint: These are the two lines of the ruling of the
Segre embedding of P1×P1. Think of the tangent plane at the point.

(d) Prove that there are exacly two lines (counting multiplicities) inter-
secting a fixed set of 4 non-intersecting lines in P3 that do not all lie
on a quadric surface.

6 Sixth Set

1. Let R be a commutative ring, and m be a maximal ideal.

(a) Show that Rm
∼= R if R is a local ring.

(b) Show by an example that Rm � R in general.

2. Let R = k[x]/〈x2〉.

(a) Show that Spec(R) only has one point.

(b) Show that R〈x〉 ∼= R.

(c) Is Spec(R) irreducible?

3. Let X = Spec(R) be an affine scheme, let p ∈ X be a point and mp be the
maximal ideal of the local ring OX,p. Show that OX,p/mp is isomorphic
to the residue field κ(p) at p defined by Frac(R/p).

4. Let R be an arbitrary communtative ring and X = Spec(R).

(a) Show that X is quasi-compact (any cover has a finite subcover).

(b) Find an example showing that X might not be Noetherian.

(c) Show that X being noetherian is not directly related to R being
noetherian by finding and example with X noetherian and R not
noetherian. (Hartshorne II.2.13).

5. What are the irreducible components of Spec k[x]/(x2(x− 1)3)?
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7 Seventh Set

1. Let F be an arbitrary field and X a scheme. Show that giving a morphism
Spec(F )→ X is exactly the same as giving a point p ∈ X and an inclusion
of fields κ(p) ↪→ F . (Hartshorne II.2.7)

2. (a) Show that there is a morphism φ from any scheme X to Spec(Z).

(b) Show that this morphism sends p ∈ X to the characteristic of the
residue field κ(p) at the point.

3. Definition Let X be an arbitrary scheme and p ∈ X a point. We define
the tangent space to X at p to be the dual space of the κ(p)-vector space
mp/m

2
p where mp is the maximal ideal of the local ring OX,p.

(a) Give the details of how mp/m
2
p gets the structure of a κ(p)-vector

space.

(b) Show that if X = Spec R is affine and p is closed and corresponds to
the maximal ideal M in R, then M/M2 ∼= mp/m

2
p as κ(p) = R/M

vector spaces.

(c) Show that X = Z(xy, xz, yz) ⊆ A3
C and Y = Z(xy(x− y)) ⊆ A2

C are
not isomorphic by computing their tangent spaces at closed points.

(d) Show by an example that the conclusion in part (b) does not hold
for non-closed points.

(e) Let X be a scheme over a field k. Show that giving a morphism of
k-schemes

φ : Spec
(
k[ε]/〈ε2〉

)
→ X

is exactly the same as giving a point p ∈ X with κ(p) = k and an
element of Tp. (Hartshorne II.2.8)

8 Eighth Set

1. Let Spec A
f−→ Spec B be a morphism of affine schemes. Let Z be a

closed subscheme of Spec B corresponing to an ideal I of B. Show that
the scheme theoretic inverse of Z is defined by (f?I)A, the ideal generated
by f?I inside A.

2. Let f : X → Y be a morphism of schemes. Show that if y ∈ Y is not in
the image of f then X ×Y Spec κ(y) is empty by reducing to the affine
case and showing that the tensor product of the rings is the zero ring

3. Let f : Spec Z[x]→ Spec Z be the morphism induced from the inclusion.
Describe all the fibers of f .
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9 Ninth Set

1. Show that the homogeneous coordinate ring is not invariant under isomor-
phism by showing that even though X = P1 is isomorphic to a conic Y
in P2 by the Veronese embedding, the homogeneous coordinate rings of X
and Y are not isomorphic. Source: Hartshorne Ch I ex. 3.9.

2. Let C be a smooth conic in P2R and p be a point on this conic. Show how
to construct the tangent line to C at p with a straightedge only. Hint:
Generalize Pascal’s theorem by allowing two points to coincide.

3. Let C be an irreducible curve of degree d in Pn. Show that C is contained
in a linear subspace of Pn of dimension d (this is trivial if d > n).

4. Let C1, C2 be curves in P2 and p be a point in their intersection. Show that
the length of the component of C1∩C2 at p is equal to dimkOP2,p/〈F1, F2〉
where F1 and F2 are the polynomials defining C1 and C2 respectively.

5. (a) Let νd : Pn → PN be the degree d Veronese embedding, and let
p1, . . . , pm be any set of distinct points in Pn. Consider the matrix

Ad =


−− νd(p1)−−
−− νd(p2)−−

...
−− νd(pd+1)−−


containing as rows (representatives in kN+1 of) the images of the
points under the Veronese map. Show that if X is the collection of
these points, then hX(d) = rank Ad.

(b) (From Harris (13.1)) Show that if X is a collection of m distinct
points in Pn and d ≥ m− 1, then you have hX(d) = m.

(c) Prove that the image of any d + 1 points under vd : Pn → PN is in
general position.

6. (a) Let C1, C2 be distinct smooth cubic curves in P2. Assume that C1∩C2

consists of 9 distinct points p1, . . . , p9. Show that any cubic passing
through p1, . . . , p8 also passes through p9.

(b) Show that the same conclusion holds of we allow some pi to be equal
as long as we count the intersection multiplicities.

(c) Show that the conclusion of (b) holds even if we allow C2 to be
singular.

7. Let C = Z(f) be a smooth cubic in P2, let Hf be the hessian of f . Let
p be a point in P2 and let Xp = Z(g) where g = ∇f(x) · p where where
x = (x0, x1, x2) are the coordinates in P2, and where we are taking for p
a representative vector.
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(a) Explain why q ∈ C ∩Xp iff the tangent line to C at q goes through
p.

(b) Show that g = xtHf(p)x, and conclude that Xp is a union of lines
iff p ∈ C is an inflection point.

(c) Show that if p is an inflection point, and q ∈ C ∩Xp is different from
p, then q is not an inflection point of C.

(d) Show that Hf(q) · q = 3∇f(q) for any point q, and conclude that if
Xp is a union of lines, then one of these lines is the tangent to C at
p.

(e) Show that if p is an inflection point, and q ∈ C ∩Xp is different from
p, then q is smooth in Xp and TC,q 6= TXp,q. Use this to conclude that
there are exactly 3 distinct points of C other than p whose tangent
line contains p.

8. Let C be a smooth cubic defined by f = 0 in P2. Let p be a fixed point of
C and use the notation x = [x0 : x1 : x2], x̂ = (x0, x1, x2) for projective
coordinates, and a point associated to it. Show that the map sending the
point x to the 3rd intersection point of the line through x and p is given
by

φ : C − {p} → C

x 7→ [(∇f(x) · p̂) p̂− (∇f(p) · x̂) x̂]

10 Tenth Set

1. Compute the geometric multiplicities of the irreducible components of
Spec k[x]/〈x2(x− 1)3〉 using the definition.

2. Do the same for Spec k[x, y]/〈x− 2y2, (x− 1)1 + y2 − 1〉.

11 Eleventh Set

1. Let φ : F → G be a morphism of sheaves on X. Show that φ is surjective if
and only if for every open U in X and for every σ ∈ G(U) there is an open
cover U = ∪Uα and elements τα ∈ F(Uα) such that φ(Uα)(τα) = σ |Uα .

2. Show that if 0→ F1 → F2 → F3 → 0 is an exact sequence of sheaves on
X, then

0→ F1(X)→ F2(X)→ F3(X)

is always exact.

3. (a) Let 0→ F1 → F2 → F3 → 0 be an exact sequence of quasi-coherent
sheaves on a scheme X. Show that if G is locally free, then

0→ F1 ⊗OX G → F2 ⊗OX G → F3 ⊗OX G → 0

is exact.
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(b) Does the above hold if G is only quasi-coherent?

4. Show that the Hom sheaf Hom(F ,G) defined by

Hom(F ,G)(U) = set of sheaf homomorphisms F |U→ G |U
is a sheaf, and give it the structure of an OX -module.

5. If F1
∼= F2, then Hom(F1,G) ∼= Hom(F2,G)

6. (a) Show that if F and G are quasi-coherent, then

(F ⊗OX G)p = Fp ⊗OX,p Gp.

(b) If F and G are locally free, are the stalks of the Hom sheafHom(F ,G)
are given by

Hom(F ,G)p = HomOX,p(Fp,Gp)?

7. Is the following true? If F is a locally free sheaf of rank r, then F⊗OX kp =
k⊕rp .

12 Twelfth Set

1. Explicitly construct the vector bundle on Pn corresponding to OPn(a) by
giving a trivializing cover and finding the transition functions.

2. Supply all the details of the proof that O(a)⊗O(b) = O(a+b) on X = Pn
(example (7.1.19) in Gathmann is missing the fact that the map he defines
is in fact an isomorphism, and is ignoring the fact that the tensor sheaf
needs sheafification).

3. Show that
∧m

(O(a1)⊕ . . .⊕O(am)) = O(a1 + . . .+ am) on X = Pn.

4. The Picard Group operation on line bundles:

(a) Let L be a line bundle. Show that L ⊗ L∨ ∼= O, where L∨ =
Hom(L,O).

(b) Show that O(D)∨ ∼= O(−D).

(c) Show that O(D1)⊗O(D2) ∼= O(D1 +D2)

(d) Use all the previous parts to explain why the set of isomorphism
classes of line bundles on a smooth curve is a group with operation
⊗, inverses given by (−)

∨
, and identity given by O. Use this to

explain why bijection between the set of isomorphism classes of line
bundles and the picard group is actually a group isomorphism.

5. Show that if F1,F2,F3 are locally free and

0→ F1 → F2 → F3 → 0

is exact, then
0→ F∨3 → F∨2 → F∨1 → 0

is also exact.
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13 Thirteenth Set

1. Proofs of the degree-genus formula. Let C ⊂ P2 be a curve of degree
d. Prove the degree genus formula...

(a) using Hilbert Polynomials (exercise 6.7.3 in Gathmann): Compute
the Hilbert polynomial of a hypersurface of degree d in Pn and use
it to figure out the genus.

(b) using Riemann-Hurwitz: Assume that C is smooth and does not
contain the point p = [0 : 0 : 1], and project P2 away from p onto
P1. This induces a morphism from C → P1. Use bezout’s theorem to
figure out the branching of the map, and then use Riemann-Hurwitz
to compute the genus of C.

(c) using a long exact sequence in sheaf cohomology: Explain where the
following exact sequence comes from

0→ OP2(−d)→ OP2 → i∗OC → 0

(here i : C → P2 is the embedding). Explain why hk(OC) =
hk(i∗OC), and then use the long exact sequence in cohomology to
figure out g(C) = h1(OC).

2. Let X be a smooth projective curve of genus 0. Show that if L1,L2 are
line bundles of the same degree on X, then h0(L1) = h0(L2).

3. Show that every smooth curve of genus zero is isomorphic to P1.

4. In P1, what is the relation between O(1) and O(p)? What about on an
elliptic curve?

5. Supply all the details from example 7.5.5.
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