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1 The difference between√
(z − a)(z − b) and

√
z − a

√
z − b

Let a, b ∈ R with a < b, and let
√
• be the square root in the complex plane with

branch cut along R<0. How different are the complex functions
√

(z − a)(z − b)
and

√
z − a

√
z − b, where by

√
(z − a)(z − b) we mean a composition? We

remark that this interpretation on
√

(z − a)(z − b) is certainly non-standard,
and in this notes we will understand why.

To figure this out, we need to figure out when the expressions inside the root
give values in the branch cut of

√
•.

Now, z − a ∈ R<0 if and only if Im(z) = 0 and Re(z) < a so the domain of
definition of

√
z − a is C − R<a. Likewise

√
z − b is defined only on C − R<b.

Therefore, the domain of definition of
√
z − a

√
z + a is C − R<b. Note that

along the interval R(a,b) the function
√
z − b has a jump discontinuity given by

a change of sign, while the function
√
z − a is analytic. Therefore

√
z − a

√
z − b

has a sign change when you cross the interval R(a,b). However , on the interval

R<a both
√
z − a and

√
z − b have sign changes, and so and so there is no

sign jump at all! Thus,
√
z − a

√
z − b can be extended analytically to R<a,

and so we can actually make sense of the function
√
z − a

√
z − b in C− R(a,b).

To explicitly compute
√
z − a

√
z − b on R<a one just takes the two roots with

positive imaginary part (and so in particular the output is a negative number).

ba

Figure 1: Branch cut of
√
z − a

√
z − b

Now, for the domain of
√

(z − a)(z − b) we need to figure out when (z −
a)(z − b) ∈ R<0. Writing z = x+ iy we find this is equivalent to

iy(2x− a− b) = 0

x2 − y2 − ax− bx+ ab < 0.
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If y = 0, the solution is given by (x − a)(x − b) < 0 and so R(a,b), and if

x = (a+b)/2, the solution is (a+b)/2+iR. Thus the domain of
√

(z − a)(z − b)
is C−

(
R(a,b) ∪ (a+ b)/2 + iR

)
. Moreover, one can check that the branch along

the line (a + b)/2 + iR is not removable because there is a sign change when
one crosses the imaginary axis! For example, if b = −a and z = δ + i, then
z2−a2 = δ2− 1−a2 + i2δ and as we change δ from positive to negative there is
a sign change in the square root

√
δ2 − 1− a2 + i2δ because we cross the branch

cut of
√
•.

ba

Figure 2: Branch cut of
√

(z − a)(z − b)

This, in particular, implies that
√

(z − a)(z − b) 6=
√
z − a

√
z − b since√

z − a
√
z − b is analytic along the line (a + b)/2 + iR. In fact, we have that

outside R(a,b)√
(z − a)(z − b) =

{√
z − a

√
z − b ifRe(z) > (a+ b)/2

−
√
z − a

√
z − b ifRe(z) < (a+ b)/2

because of the uniqueness of analytic continuation and the fact that
√

(z − a)(z − b) =√
z − a

√
z − b on R>b and

√
(z − a)(z − b) = −

√
z − a

√
z − b on R<a (for

example, take z = a − 1 to find
√

(z − a)(z − b) =
√
b− a+ 1 ∈ R and√

z − a
√
z − b =

√
−1
√
a− b− 1 = −

√
b− a+ 1 by taking both roots with

positive imaginary part as explained above).
Note, the above in particular shows (for a = b = 0) that

√
z2 =

{
z ifRe(z) > 0

−z ifRe(z) < 0

which is easy to check directly.

2 The Riemann Surface of
√
z − a

√
z − b

The above is the reason why one has to be vary careful when interpreting ex-
pressions of the form

√
(z − a)(z − b), since viewing them as compositions adds
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extraneous branch cuts. What is even more puzzling is that at any z one can
clearly find two complex w which square to (z− a)(z− b) (counting with multi-
plicities!), so it should be fine to evaluate the function on all the complex plane.
The issue however is that if one starts at z0 and choses one w0 that squares
to (z0 − a)(z0 − b), and then continues analytically w =

√
(z − a)(z − b) while

going around z = a and not around z = b, then when one comes back to z0 the
“function” is now returning −w0, the other value!

One can show that this will not happen if one does not go around any of
the points, or both points at the same time1, and so for example there is a well
defined analytic function on C−R(a,b) given by

√
(z − a)(z − b) which returns

w0 at z0. It is important to stress that here the expression
√

(z − a)(z − b) is
not a composition but instead a name we give to the function. The other square
root will be then give by the negative of the function given by −

√
(z − a)(z − b).

For example, if z0 ∈ R>b, and if we chose w0 to be the negative root, and then
we will have

√
(z − a)(z − b) = −

√
z − a

√
z − b, where the square roots are

principal branches which is the function we studied in the previous section. If
we chose w0 to be the positive root, then

√
(z − a)(z − b) =

√
z − a

√
z − b.

Riemann’s way to remedy this was to construct a Riemann surface with two
sheets C − R(a,b), and then glue them correctly. Here what one does is to use
the symmetry principle, which states that if one has two holomorphic functions
on two regions whose boundaries share an interval, and so that the continuous
extensions of both functions agree on the interval, then one can glue them to
get a holomorphic function!2

In our case, and for definiteness, let

f1(z) =
√

(z − a)(z − b) =
√
z − a

√
z − b

on one sheet, and let

f2(z) = −
√

(z − a)(z − b) = −
√
z − a

√
z − b

on the other sheet. Note that as you approach the cut R(a,b) form above,
f1(z) extends to a function that returns the positive imaginary root, while as
you approach the cut from below f1(z) extends to a function that returns the
negative imaginary root. Because of this, if we want to extend f1(z) we should
really see the cut as two intervals, and a nice way to do this is to enlarge the
slit in C − R(a,b) so that it becomes a circle by a conformal map. The precise
conformal map that does this is well known (see [1]) and given by

z =
b− a

4

(
w +

1

w

)
+
a+ b

2
.

The map
φ : Cw → Cz

1See Lectures on the Theory of Elliptic Functions, by Harris Hancock, art. 114 p 133.
2See for example Stein and Shakarchi p. 60. The statement there is only for regions

symmetric with respect to the real axis, but the proof works in general.
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is map is 2 to 1 and the preimage of any z /∈ R[a,b] is given by a point w1 inside
the unit w-circle and a point w2 outside of it, with w1w2 = 1. The preimages
of the z ∈ R(a,b) are two points, one in the upper half of the w-circle, one in
the lower half with equal real parts. Finally, φ is branched along the two points
w = −1, w = 1 which are the only preimages of the points z = a and z = b
respectively. We therefore see that φ maps the complement U of the closed
unit disc in the w-plane centered at the origin conformally and bijectively to
C−R(a,b), and it also maps the interior B of the disc conformally and bijectively
to C− R(a,b).

Then we can define f1 on U by using the conformal map (we will still call it
f1) and now we can extend f1(w) continuously to the boundary ∂U = S1. By
what was discussed above, this extension gives positive purely imaginary values
on the top part of the circle, while it gives negative imaginary values on the
bottom part of the circle, corresponding to the two extensions of f1(z) to the
slit while approaching from above or from below.

We can also define f2 on B by using the conformal map, and by the same
reasoning, f2(w) will have a continuous extension to ∂B = S1. If one analyses
the conformal map carefully, one sees that approaching the top part of S1 form
B corresponds to approaching the slit from below in the z-plane, and so the
extension of f2(w) to the top part of S1 corresponds to the extension of f2(z)
to the slit when approaching from below, which will give the positive purely
imaginary root, since f2(z) = −f1(z).

This shows that the extensions of f1(w) and f2(w) agree on S1, and so by
the symmetry principle we mentioned above we can glue them to obtain an
analytic function F on the whole w-plane (it will have a pole at w =∞)! This
w plane is the Riemann surface of

√
z − a

√
z − b, which now has no branch cuts.

Explicitly, it is given by

F(w) =

{
f1( b−a

4

(
w + 1

w

)
+ a+b

2 ) if w ∈ U
f2( b−a

4

(
w + 1

w

)
+ a+b

2 ) if w ∈ B

=

{
f1( b−a

4

(
w + 1

w

)
+ a+b

2 ) if w ∈ U
−f1( b−a

4

(
w + 1

w

)
+ a+b

2 ) if w ∈ B

and the extension from above of f1 in the top part of S1 and the extension from
below of f1 on the bottom part of S1, which in this case will be positive purely
imaginary values on the top part of S1 and negative purely imaginary values on
the top part of S1.
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