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Abstract

We study the leading order asymptotics of a Random Matrix theory partition func-

tion related to colored triangulations. This partition function comes from a three

Hermitian matrix model that has been introduced in the physics literature. We pro-

vide a detailed and precise description of the combinatorial objects that the partition

function counts that has not appeared previously in the literature. We also provide

a general framework for studying the leading order asymptotics of an N dimensional

integral that one encounters studying the partition function of colored triangulations.

The results are obtained by generalizing well know results for integrals coming from

Hermitian matrix models with only one matrix that give the leading order asympti-

otics in terms of a finite dimensional variational problem. We apply these results to

the partition function for colored triangulations to show that the minimizing density

of the variational problem is unique, and agrees with the one proposed in the physics

literature. This provides the first complete mathematically rigorous description of

the leading order asymptotics of this matrix model for colored triangulations.
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Chapter 1

Introduction

1.1 The Gaussian Unitary Ensemble (GUE)

The space of N × N Hermitian matrices is in natural bijection with RN2 , since a

Hermitian matrix M = (mij) is uniquely determined by its N real entries on the

diagonal and the real and imaginary parts of its entries above the diagonal. This

space, endowed with the probability measure

(1.1.1) dµ̃N(M) :=
1

Z̃GUE
N

exp

{
−1

2
TrM2

}
dM,

is called theGaussian Unitary Ensemble (GUE), where dM is Lebesgue measure

in the independent entries of the matrix

dM :=
∏
i

dmii

∏
i<j

d (Remij) d (Immij) ,

and Z̃GUE
N is the normalizing constant that makes µ̃N a probability measure.

By explicitly writing TrM2 in terms of the variables in dM , one can see that the

probability measure µ̃N is simply the joint probability distribution of the independent

and normally distributed N2 variables showing up in dM , where all variables have

mean zero, and variance equal to either 1 or 1/2 (depending on whether they are on

or off the diagonal). Using this, one can explicitly compute the normalizing constant

by computing the gaussian integral

(1.1.2) Z̃GUE
N =

∫
RN2

exp

{
−1

2
TrM2

}
= 2N/2πN

2/2.

1.1.3 Rescaled GUE. It is know that the real eigenvalues of the matrices in GUE

are statistically confined to the interval [−2
√
N, 2
√
N ], and so it is natural to rescale
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the matrices in GUE by 1/
√
N . The corresponding space of rescaled matrices has

probability measure given by

(1.1.4) dµN(M) :=
1

ZGUE
N

exp

{
−N

2
TrM2

}
dM.

We call this space the rescaled Gaussian Unitary Ensemble, and we call the

measure µN rescaled GUE measure. Here dM is again Lebesgue measure in the

independent entries of the matrix

dM :=
∏
i

dmii

∏
i<j

d (Remij) d (Immij) ,

and ZGUE
N is the normalizing constant that makes µN a probability measure

ZGUE
N :=

∫
exp

{
−N

2
TrM2

}
dM =

√
2NπN2/NN2 .

1.1.5 Induced measure on the space of eigenvalues. The measures µ̃N and

µN induce measures on the space of eigenvalues of the corresponding matrices. The

space of unordered eigenvalues λ1, . . . , λN , which is naturally in bijection with RN ,

has induced measures given by (see for example chapter 5 in [7])

dµ̃ev
N (λ) =

1

Z̃evGUE
N

e−
∑N
i=1 λ

2
i /2
∏
i<j

(λi − λj)2dλ1 . . . dλN ,

in the GUE case, and

dµev
N (λ) =

1

ZevGUE
N

e−N
∑N
i=1 λ

2
i /2
∏
i<j

(λi − λj)2dλ1 . . . dλN ,

in the rescaled GUE case. Here Z̃evGUE
N and ZevGUE

N are the appropriate normalizing

constants that make µ̃ev
N and µev

N probability measures.

1.2 Random matrix theory and enumeration of maps

1.2.1 The genus expansion. In their paper [5] from 1978, the physicists Brézin,

Parisi, Itzykson and Zuber described a very concrete formal relation between integrals
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with respect to rescaled GUE and enumeration of maps on orientable surfaces, which

are graphs embedded in surfaces in such a way that their complement in the surface

is a union of simply connected sets. Their ideas resulted from specializations of ideas

of ’t Hooft [27], and have subsequently been analyzed, made mathematically precise,

and exploited by both physicists and mathematicians.

This formal relation from [5] is now referred to as the genus expansion, and in

its (generalized) modern form, as stated for example in [15], states that one has the

formal expansion

1

N2
log

∫
exp

{
N Tr

(
s∑
i=1

ti qi(M1, . . . ,Mm)

)}
dµN(M1) . . . dµN(Mm)

“ = ”
∑
g≥0

1

N2g
eg(t1, . . . , ts),(1.2.2)

where µN is rescaled GUE measure (1.1.4), the qi are monomials in the Hermitian

matricesM1, . . . ,Mm, the ti are complex numbers assumed to make the integral exist,

and where the “ = ” symbol means that (formal) partial derivatives in the t’s on both

sides agree when setting t1 = . . . = tn = 0. The eg are the formal generating functions

for counts of maps of genus g defined by

(1.2.3) eg(t1, . . . , ts)“ = ”
∑

n1,...,ns≥0

Mg[(q1, n1), . . . , (qs, ns)]
tn1
1 . . . tnss
n1! . . . ns!

,

where the coefficientsMg[(q1, n1), . . . , (qs, ns)] ∈ N are related to the number of maps

on an orientable surface of genus g with ni vertices, of type qi. We will make this

more precise in chapter 2 when we discuss the combinatorial interpretation of the

integral we will be studying in this document.

1.2.4 The special case m = 1. The case the case m = 1 with only one matrix

M1 = M was the original setting in which the genus expansion was introduced in

[5]. In this setting, the term
∑s

i=1 ti qi(M) is just a polynomial P (M) with the

t’s as coefficients, which up to relabeling of the t’s (and introduction of more t’s if
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necessary), may be written as

P (M) :=
s∑
i=1

tiM
i,

so that the genus expansion (1.2.2) takes the from

(1.2.5)
1

N2
log

∫
exp

{
N Tr

(
s∑
i=1

tiM
i

)}
dµN(M) “ = ”

∑
g≥0

1

N2g
eg(t1, . . . , ts).

One can reduce the integral in (1.2.5), as Brézin, Parisi, Itzykson and Zuber did

in [5], to an integral over the eigenvalues λ1, . . . , λN of M , obtaining (see for example

[7])

(1.2.6)
∫
RN2

exp {N Tr (P (M))} dµN(M) =

∫
RN

exp

{
N

N∑
j=1

P (λj)

}
dµev

N (λ).

This representation allowed the authors of [5] to study the asymptotics of the

integral as N →∞, which by (1.2.5) seem to be intimately related to combinatorial

counts, and we discuss their ideas in more depth in chapter 3.

1.2.7 Mathematically precise interpretation of the genus expansion. We

remark that the deduction of (1.2.2) involves several formal manipulations involving

limits and reordering of series, and (1.2.2) it is not expected to be an actual equality

in general. Among other things, there are various convergence issues on both sides of

the identity.

Only until recently, Ercolani and McLaughlin in their paper [12] from 2003, pro-

vided an interpretation of the genus expansion that is not just formal for the case

m = 1 with only one matrix (1.2.5). They proved that if the polynomial P (M) has

leading term of even degree, then for t’s lying in a particular subset Ω of RN guaran-

teeing, among other things, that the integral converges, one can interpret (1.2.5) as

an asymptotic expansion in N as N → ∞, meaning that if one truncates the right

hand side at some g = g0, then the difference between the two sides is O(1/N2g0+2)
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uniformly in Ω. They also proved that the generating functions eg are in fact analytic

in the t’s in a neighborhood of t = 0, so that (1.2.3) is an actual Taylor series expan-

sion. Their methods involved Riemann Hilbert methods and orthogonal polynomials,

which heavily relied on the representation (1.2.6).

More recently, using a different collection of ideas, Guionnet and Maurel-Segala in

[15, 16] have shown that the interpretation of the genus expansion as an asymptotic

expansion also holds for arbitrary m as in (1.2.2) for at least for the first two terms

e0 and e1 (meaning they are the coefficients of the first two terms of an asymptotic

expansion), under specific hypothesis on the term
∑s

i=1 ti qi(M1, . . . ,Mm) and the t’s

(for example if
∑s

i=1 ti qi(M1, . . . ,Mm) is strictly convex and self-adjoint, and the t’s

are small enough).

1.2.8 The leading order asymptotics give planar counts. Note that the

results described in 1.2.7 in particular imply that the limit as N →∞ of the integral

on the left of (1.2.2) is in fact the generating function for maps on a sphere, as long

as the appropriate assumptions on
∑s

i=1 ti qi(M1, . . . ,Mm) are satisfied.

1.3 The partition function for colored triangulations

In this dissertation we will be studying the asymptotics of the partition function

(1.3.1) ẐN(t) :=

∫∫∫
exp {itN Tr (ABC + ACB)} dµN(A)dµN(B)dµN(C),

where dµN is rescaled GUE measure (1.1.4). We will show that the integral on the

right exists for real t in chapter 6, and will mostly assume that t ∈ R.

1.3.2 Combinatorial interpretation. This particular partition function (1.3.1)

has been studied in the physics literature in [6, 18, 20, 21, 13] because of its relation to

counts of colored triangulations, which are described in these works as triangulations

of genus g surfaces where the each edge is colored with one of three available colors
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A,B, C, in such a way that all three colors show up on the edges of each triangle. This

interpretation is based on a form of the genus expansion (1.2.2), but as is common

in the physics literature, the precise nature of the counts, which can depend on the

symmetries of the map in a complicated way, is not made precise.

1.3.3 Leading order asymptotics in the physics literature. The leading order

asymptotics of the partition function N−2 log ẐN(t) was studied in [6, 18, 20, 21, 13]

using ideas from [5] that we will outline in chapter 3. The applicability of ideas

from [5] relies strongly on the fact that ẐN(t) can be expressed as an N -dimensional

integral over the eigenvalues of just one of the matrices

(1.3.4) ẐN(t) =

∫
RN

∏
1≤i,j≤N

1√
1 + t2(λi + λj)2

dµev
N (λ),

which in a sense connects this ẐN(t) to the case m = 1 in (1.2.2), but is manifestly

not of the from of the integral on the right (1.2.6).

The contents of [6, 18, 20, 21, 13] contain claims that the limit limN→∞N−2 log ẐN(t)

exists and is analytic at t = 0, and give a Taylor expansion of it around t = 0 (which

by the genus expansion is expected to correspond to counts for colored triangulations

on a sphere). This expansion is obtained following saddle-point heursitics from [5],

which we will discuss in detail in chapter 3.

1.4 This dissertation

One of the main goals of this dissertation is to provide a mathematical framework

which describes the leading order asymptotics of integrals of the form

ZV,H
N :=

∫
RN
e−N

∑
V (xi)

∏
i<j

(xi − xj)2
∏

1≤i,j≤N

1

H(xi, xj)
dNx,

and to use this to give complete mathematical proofs of the leading order asymptotics

conjectured in the physics literature for ẐN(t).
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In chapter 4 we prove the existence of the limit limN→∞N−2 logZV,H
N under general

hypothesis on V and H by generalizing results from [19], and prove the equality

lim
N→∞

1

N2
logZV,H

N = inf
µ∈M1(R)

∫∫ [
log

H(x, y)

|x− y| +
1

2
V (x) +

1

2
V (y)

]
dµ(x)dµ(y),

where the infimum is taken over all probability measures in R. We will use this to

prove the existence of the limit limN→∞N−2 log ẐN(t), and the equality

lim
N→∞

1

N2
log ẐN(t) = inf

µ∈M1(R)
I0[µ]− inf

µ∈M1(R)
It[µ],

where

It[µ] :=

∫∫ [
log

√
1 + t2(x+ y)2

|x− y| +
1

4
x2 +

1

4
y2

]
dµ(x)dµ(y).

In chapter 5 we show that the kernel

log

√
1 + t2(x+ y)2

|x− y|

showing up in It is positive definite, a notion we introduce there, and show that this

guarantees the the minimizer of the functional It is unique. We provide criteria to

characterize this minimizer by generalizing results from the theory of logarithmic

potentials with external fields, which we use in chapter 6 to show that the density

ρt proposed in the physics literature does indeed give the unique minimizer of the

functional It. We also prove that under the assumption that V is a polynomial and

that the unique minimizer

It,V [µ] :=

∫∫ [
log

√
1 + t2(x+ y)2

|x− y| +
1

2
V (x) +

1

2
V (y)

]
dµ(x)dµ(y),

has a continuous density ρt,V (x) satisfying some technical properties, then ρt,V (x) will

be supported on finitely many intervals, and will be analytic (in x) at any point in

the interior of its support.

In chapter 6 we provide a complete construction of the density ρt using the con-

structions in the physics literature, and in the process prove analyticity in t of various
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quantities of interest for to the asymptotics of ẐN(t). In particular, we prove that the

endpoints of the support of the destiny ρt are analytic in t, and prove analyticity of

ρt(x) in t for all x in the interior of its support. The analytic dependence of ρt on the

parameter t will be used to show that limN→∞N−2 log ẐN(t) is analytic in t around

t = 0. All of these results are analogous to results that are available for one-matrix

models (m = 1), but that were not known in this situation.

Finally, as mentioned in 1.3.2, the precise nature of the counts of colored triangu-

lations given by the partition function ẐN(t) is not described precisely in the physics

literature, and we devote chapter 2 to careful description of the combinatorial inter-

pretation of log ẐN(t). In particular, we will give a simple labeling scheme for these

colored triangulations which trivializes their “automorphism group”, so that one does

not need to worry about the symmetries of the triangulations.

Summarizing, in chapter 2 we will discuss the genus expansion and the combina-

torial interpretation of log ẐN(t). In chapter 3 we provide a detailed overview of the

physics literature relevant to ẐN(t). In chapters 4 and 5 we discuss the asymptotics

of integrals of the form ZV,H
N , and study its associated variational problem. In chapter

6 we use the contents of chapters 4 and 5 and the constructions in the physics litera-

ture to give precise statements regarding the leading order asymptotics of log ẐN(t).

In the appendices we describe in detail the connection between matrix integrals and

combinatorics of maps, and give a complete proof of the genus expansion (as a formal

identity) for log ẐN(t).
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Chapter 2

Combinatorial interpretation of ẐN(t)

We will use the contents of chapter 7 in [15] to precisely describe the combinatorial

interpretation of the partition function ẐN(t). We start by giving a brief summary of

the relevant results and definitions from [15].

2.1 The genus expansion

2.1.1 Stars. We let C〈M1, . . . ,Mm〉 be the the ring of polynomials with non-

commuting variablesM1, . . .Mm. Given a monomial q(M1, . . . ,Mm) = Mi1Mi2 . . .Mik

in the M ’s, we associate to it a star of type q, which by definition is a vertex with

k labeled half edges with labels Mi1 ,Mi2 , . . . ,Mik , an orientation, and one special

marked half edge Mi1 corresponding to the first term of q. We represent these stars

graphically as in figure 2.1, where the special marked half edge is the one that has a

hollow dot, and the arrow indicates the orientation of the vertex. It is useful to think

of the M ’s as colors.

Mi1
Mi2

Mi3

Mik

Figure 2.1. A star of type q = Mi1Mi2 . . .Mik

This association between monomials and stars is bijective by the fact that the

special marked edge indicates what the first term of the corresponding monomial is,
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and the orientation specifies the ordering of the monomial. For example, the star in

figure 2.2 is a star of type M2
1M3M2.

M1

M1

M3

M2

Figure 2.2. A star of type M2
1M3M2

2.1.2 Definition. Given distinct monomials q1, q2, . . . , qs in the variablesM1, . . . ,Mm,

a map of genus g with ni stars of type qi for i = 1, . . . , s is a connected

(multi)graph G embedded in an oriented surface of genus g with
∑
ni vertices in

such a way that:

• Each vertex of G has the structure of a star qi for some i = 1, . . . , s, where the

orientation of the surface coincides with the orientation of each star.

• There are exactly ni vertices in the graph G with the structure of a star of type

qi, and these vertices are labeled with the labels v(i)
1 , v

(i)
2 , . . . , v

(i)
ni .

• The edges of G connect half edges of the stars with the sameM -labels. In other

words, of one thinks of the M ’s as colors, then the edges connect half edges

with the same color, so one can think of the edges themselves having a color.

• The mutigraph G is the 1-skeleton of a CW -complex structure of the surface. In

other words, the complement of G in the surface is the disjoint union of simply

connected sets, which we call faces. The number of these faces is related to the

genus g and the valences of the vertices by the Euler genus formula.
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2.1.3 Equivalence of maps. We say that two maps of genus g with ni stars of

type qi are equivalent if there is an orientation preserving homeomorphism of the

surface that sends one map to the other that is compatible with the labels and the

star types (in particular with the marking of the special half edge), and we define the

number

Mg[(q1, n1), . . . , (qs, ns)] := #

{
maps of genus g with ni stars
of type qi up to equivalence

}
.

We remark that this notion of equivalence does not agree with the notion isotopy

(which identifies two maps that are smoothly deformable from one another) for g ≥ 1

because of the existence of the so called Dehn Twists, which are orientation preserv-

ing homeomorphisms that result from the procedure of cutting a handle, making a

complete twist on one of the sides, and gluing the handle back together. See [22, p.30]

and references therein.

2.1.4 The genus expansion. The genus expansion, originally described by Brézin,

Itzykson, Parisi and Zuber for m = 1 in [5], takes the following form in this setting.

2.1.5 Proposition (The Genus Expansion, [15] Lemma 7.12). One has the formal

expansion

1

N2
log

∫
exp

{
NTr

(
s∑
i=1

tiqi(M1, . . . ,Mm)

)}
dµN(M1) . . . dµN(Mm)

“ = ”
∑
g≥0

1

N2g
eg(t1, . . . , ts),

where µN is rescaled GUE measure as in (1.1.4), eg is the formal generating function

for maps of genus g defined by

eg(t1, . . . , ts)“ = ”
∑

n1,...,ns≥0

Mg[(q1, n1), . . . , (qs, ns)]
tn1
1 . . . tnss
n1! . . . ns!

,

and where the “ = ” symbol means that (formal) partial derivatives in the t’s on both

sides agree when setting t1 = . . . = tn = 0.
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2.1.6 Comments on the presentation in [15]. We remark that the description

of the labels of the maps in [15] is not as precise as we have presented it 2.1.2. The

labeling scheme we have described is compatible with the statements and proofs found

there. We also remark that Guionnet in [15] incorrectly claims that equivalence of

maps should be taken up to homeomorphism of the surface (at least for general term∑s
i=1 tiqi(M1, . . . ,Mm)). It is of fundamental importance that the homeomorphism

be orientation preserving as we have stated in 2.1.3.

We present all the details of the genus expansion with a careful description of the

labels in the particular case of the integral (1.3.1) we will be studying in appendix C.

In appendix A we discuss the details of the connection between matrix integrals and

combinatorial objects related to maps in a particularly simple situation.

2.2 Combinatorial interpretation of ẐN(t)

Using the form of the genus expansion given in 2.1.5, we are now ready to provide the

combinatorial interpretation of the partition function ẐN(t). We start by defining, the

non-commuting monomials q1(A,B,C) = ABC, q2(A,B,C) = ACB corresponding

to the tri-valent stars shown in figure 2.3.

Type q1 = ABC Type q2 = ACB

A

BC

A

CB

Figure 2.3. The two types of stars.

2.2.1 Removal of the special marking. We remark that we are removing the

marking of the special half edge A from the stars described in 2.1.1, because it is

unnecessary in this situation since these stars only have one half edge of type A.
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2.2.2. By the genus expansion one has the formal identity

(2.2.3)
1

N2
log

∫
exp {NTr (t1q1 + t2q2)} dµN(A)dµN(B)dµN(C)“ = ”

∑
g≥0

1

N2g
eg(t1, t2)

where dµN is rescaled GUE as in (1.1.4) and

eg(t1, t2) :=
∑

n1,n2≥0

Mg[(q1, n1), (q2, n2)]
tn1
1 t

n2
2

n1!n2!
,

is a formal generating function for maps with these two types of stars. For example,

figure 2.4 shows the only map of genus 0 with one star of type q1 and and one star

of type q2 up to equivalence. The orientation of the surface, which determines the

types of the stars, is specified by the arrow. In particular, the coefficient of t1t2 in

the expansion of e0(t1, t2) is 1.

v
(1)
1

v
(2)
1

A
B
C

Figure 2.4. A map with one vertex of type q1 and one vertex of type q2

Note that the coefficients Mg[(q1, n1), (q2, n2)] are zero unless n1 + n2 is even

because all stars have valence three. If we now set t1 = t2 = it, then on the right side

of (2.2.3) we get the partition function (1.3.1) and so (2.2.3) takes the form

1

N2
log ẐN(t) “ = ”

∑
g≥0

1

N2g
eg(t),

where

eg(t) :=
∑
n≥0

( ∑
n1+n2=2n

(
2n

n1

)
Mg[(q1, n1), (q2, n2)]

)
(−1)n

(2n)!
t2n.
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2.2.4 Colored tri-valent maps. One can interpret the sum inside the parenthesis

above as the number of maps of genus g with 2n vertices of type q1 and q2 with no

restriction on the number of each type, and where labels for the vertices are taken

from the set {1, . . . , 2n} (instead of the v(j)
i ), since the binomial coefficient is the

number of ways to chose n1 labels from the set {1, . . . , 2n} for the starts of type q1.

We call these maps, with this particular labeling scheme for their vertices, colored

tri-valent maps. Explicitly, a colored tri-valent map with 2n vertices is a graph

embedded on a surface with 2n vertices labeled 1, . . . , 2n where each vertex has the

structure of a star of type either q1 or q2, where the complement of the graph in the

surface is a union of simply connected sets, and where each edge has a color that

agrees with the colors specified by the stars it connects.

In such a way, we obtain the following interpretation for eg(t):

eg(t) =
∑
n≥0

 number of colored tri-valent maps
of genus g with 2n stars of

types q1 or q2 up to equivalence

 (−1)n

(2n)!
t2n.

2.2.5. For example, there are two colored trivalent maps with genus zero, given by

the two ways of labeling the vertices of the map in figure 2.4 with the labels 1 and

2. They are depicted in figure 2.5. Note that swapping the labels of the vertices

gives a different colored tri-valent map because it changes their coloring scheme,

corresponding to the type of star. This shows that the coefficient of −t2/2! in the

expansion of e0(t) is 2.

Note that for colored tri-valent maps, changing the orientation of the surface has

the effect of swapping the types of all the stars in the map.

2.2.6 Colored triangulations. Taking the dual of these colored tri-valent maps in

the surface they are embedded in, as described briefly in [15], gives the interpretation

for eg(t) as a formal generating function for colored triangulations. More precisely,
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1 2A
B
C

A
B
C

12

Figure 2.5. All colored tri-valent maps with two vertices.

we have

(2.2.7) eg(t) =
∑
n≥0

(−1)n

(2n)!

 number of colored triangulations
with 2n triangles on an orientable

surface of genus g up to equivalence

 t2n,

where by a triangulation we mean a multigraph (a graph that allows multiple edges

between vertices) that is embedded inside a surface in such a way that the complement

of the graph in the surface is a disjoint union of simply connected sets, and so that each

of these sets has three distinct edges on its boundary. By a colored triangulation

with 2n triangles we mean a triangulation of an oriented surface with 2n labeled

triangles 1, 2, . . . , 2n together with a coloring of each edge with one of the three colors

A,B, C in such a way that each triangle has one edge of each of the three colors. We

stress the fact that a colored triangulation consists not only of the multigraph with

labels and colors, but also of a fixed orientation of the surface.

An example of a colored triangulation of a sphere using two triangles is shown in

the figure 2.6, where the orientation on the surface is specified by the arrow. Note that

in figure 2.6 the coloring scheme of the edges of triangle 1 following the orientation

is ABC, while for triangle 2 it is ACB. These two schemes are the only two ways

that the edges of a triangle can be colored using three distinct colors (up to cycling),

and the coupling of the three matrices in the partition function ẐN(t) has this form

precisely to take into account for these two ways to color the edges.

We say that two triangulations are equivalent if there is an orientation preserving

homeomorphism of the surface that takes vertices to vertices and edges to edges that
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1

A

B
C 2

Figure 2.6. Colored triangulation of a sphere with two triangles.

is compatible with the colors and the labels.

2.2.8. We remark that the description of the counts in eg do not involve unknown

automorphism groups of the embedded graphs or triangulations. This precise de-

scription of the counts has not appeared previously in the literature

2.3 Some examples

2.3.1 The case g = 0 and n = 1 (two triangles). As follows by the discussion

in 2.2.5 after taking the duals, there are only two colored triangulations on a sphere up

to equivalence. One is depicted in figure 2.6, and the other one results from swapping

the labels of the triangles.

2.3.2 The case g = 0 and n = 2 (four triangles). Ignoring colors and labels,

there are two ways to make a sphere by glueing triangles together, where no two

edges of the same triangle can be glued together (a condition that is necessary if

one expects to be able to color their edges with three different colors). These two

ways are depicted in figure 2.7, where the dots show the positions of the vertices of

the triangles. Now, if we fix the orientation on these surfaces, then the orientation

preserving homeomorphisms will correspond to rotations of these polyhedra in space.

In case (a), we can use these rotations to make sure that triangle 1 is the frontal

face, and its edge with color A is the bottom one as depicted in figure 2.8 (the
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(a) (b)

Figure 2.7. Construction of a sphere with four triangles.

orientation is determined by the bent arrow in triangle 1). With triangle 1 and edge

with color A in their fixed positions, there are six distinct ways to label the remaining

triangles with labels 2, 3, 4. Moreover, there are two ways to complete the coloring

of the edges of triangle 1 (by choosing if it is a type I or II triangle), and each way

can be seen to fix the coloring of all the remaining edges by the condition that each

triangle needs to have the three colors in its edges. Thus, there are in total 12 colored

triangulations of type (a).

triangle 1

edge with color A

Figure 2.8. Canonical position for case (a).

Similar considerations show that there are 72 colored triangulations with four

triangles of type (b), and so we see there are in total 84 colored triangulations with

four triangles.
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Chapter 3

Overview of the Physics Literature

3.1 Background on saddle point approach for the leading term.

The genus expansion, which we discussed in sections 1.2 and 2.1 establishes a surpris-

ing connection between random matrix theory and maps on surfaces. This connection

was described in its modern from for the first time in the highly influential paper [5]

by physicists Brézin, Itzykson, Parisi, and Zuber. In [5], the authors not only describe

the genus expansion, but also describe a heuristc approach to obtain the leading order

asymptotics for the integrals as the size of the matrices grows, related to counts of

maps on a sphere.

In this section we present a brief summary of their ideas regarding the asymptotics

of the integrals, since the heuristic arguments that physicists have for the partition

function of colored triangulations, which we discuss in section 3.2, are entirely based

in their heuristics.

We present their ideas, as the authors did themselves in [5] for the sake of con-

creteness, for the particular case of 4-valent planar maps.

3.1.1 The genus expansion for the case of one matrix and pure valence 4.

If we define

Ẑ
[4]
N (t) :=

∫
RN2

exp
{
−N Tr

[
tM4

]}
dµN(M),

then by the genus expansion Ẑ [4]
N (t) is the formal generating function counting maps

with stars of type M4 (in other words, vertices of valence 4 with a special marking

on one of their half edges)

(3.1.2)
1

N2
log Ẑ

[4]
N (t)“ = ”e

[4]
0 (t) +

e
[4]
1 (t)

N2
+
e

[4]
2 (t)

N4
+ . . .
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where eg(t) is defined by

(3.1.3) e[4]
g (t) :=

∑
n≥1

(−1)n+1

n!


number of maps with n
vertices of valence 4 on a
surface of genus g up

to equivalence

 tn.

3.1.4. As in (1.2.6), one can reduce to an integral over the eigenvalues of the matrix

Ẑ
[4]
N (t) =

∫
RN

exp

{
−N

N∑
j=1

tλ4
j

}
dµev

N (λ),

which we write as

Ẑ
[4]
N (t) =

Z
[4]
N (t)

Z
[4]
N (0)

,

where

Z
[4]
N (t) :=

∫
exp

{
−N

∑
i

Vt(xi)

}∏
i<j

(xi − xj)2dNx,

and

Vt(y) :=
y2

2
+ ty4.

3.1.5 Heuristics for leading order asymptotics. By writing

Z
[4]
N (t) =

∫
exp

[
−N2RN,t(x)

]
dNx,

where

RN,t(x) :=
1

N

∑
i

V
[4]
t (xi) +

1

N2

∑
i 6=j

log
1

|xi − xj|
,

the authors of [5] claim that the main contribution to N−2 logZ
[4]
N (t) for large N

should be given by

(3.1.6) − 1

N2
logZ

[4]
N (t) '

N→∞
RN,t(x

∗(t))

where x∗(t) = (x∗1(t), x∗2(t), . . . , x∗N(t)) minimize RN,t(x), and so should satisfy the

equations

(3.1.7) V ′t (x
∗
i (t)) =

1

N

N∑(i)

j=1

1

x∗i (t)− x∗j(t)
,
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for i = 1, . . . , n, where the (i) on the sum means it avoids the value j = i.

Combining this with (3.1.2), the authors of [5] conclude that the generating func-

tion for genus zero maps should be given by

e
[4]
0 (t)“ = ” lim

N→∞
−RN,t(x

∗(t)).

3.1.8 The saddle-point equation. The authors of [5] then consider the associated

continuous problem, where they assume that the coordinates of x∗(t) have a limiting

density ρ[4]
t (x) as N →∞. More explicitly, they assume that the measure

1

N

N∑
i=1

δx∗i (t)

converges (in some unspecified sense) to the measure with continuous density ρ[4]
t (x).

Under these assumptions, (3.1.6) can be rewritten as

(3.1.9) − 1

N2
logZ

[4]
N (t) '

N→∞

∫
Vt(x)ρ

[4]
t (x)dx+

∫∫ (
log

1

|x− y|

)
ρ

[4]
t (x)ρ

[4]
t (y)dxdy

while (3.1.7) takes the form

(3.1.10) V ′t (x) = p.v.

∫
R

ρ
[4]
t (y)

x− y dy

for x ∈ supp ρ[4]
t . This last equation they call the saddle-point equation for ρ[4]

t .

3.1.11 The Sokhotski-Plemelj formulas. Under the assumption that the density

is sufficiently well behaved (e.g., if it is Hölder continuous), one can relate the principal

value integral in (3.1.10) to the unknown density ρ[4]
t explicitly through the Sokhotski-

Plemelj formulas (see for example [14]), which state that the function

W
[4]
t (z) :=

∫
R

ρ
[4]
t (y)

z − y dy,

defined for z in the complement of the support of ρ[4]
t satisfies

(3.1.12) W
[4]
t (x± i0) = p.v.

∫
R

ρ
[4]
t (y)

x− y dy ∓ iπρ
[4]
t (x), x ∈ supp ρ[4]

t ,
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where we have used the notation

f(x± i0) := lim
ε↓0

f(x± iε)

for the boundary values of a function.

3.1.13 The function W
[4]
t . The authors then assume that ρ[4]

t is continuous, is

sufficiently well behaved so that the Sokhotski-Plemelj formulas are applicable, and

has compact support [−βt, βt] where βt depends on some unknown way on t. It then

follows that the complex valued function W [4]
t satisfies the following properties:

1. W [4]
t (z) is analytic outside [−βt, βt].

2. W [4]
t has the expansion

W
[4]
t (z) =

1

z
+O

(
1

z2

)
around z =∞, since

∫
ρ

[4]
t = 1, as it is a probability density.

3. The jump discontinuity along [−βt, βt] satisfies (see (3.1.10) and (3.1.12))

(3.1.14) W
[4]
t (x− i0) +W

[4]
t (x+ i0) = 2V ′t (x) = 2x+ 8tx3, x ∈ [−βt, βt],

(here they are implicitly assuming the boundary values are finite).

The authors then exhibit a function that satisfies the above conditions, given by

(see for example section 6.7 in [7])

W
[4]
t (z) =

1

2
V ′t (z)−

√
z2 − β(t)2

(
1

2
+ 2tz2 + tβ(t)2

)
,

where the square root is positive for z > β(t), and

βt = β(t),

is the analytic branch of β as a function of t defined by the equation

3tβ4 + β2 − 4 = 0,
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that is positive for t ≥ 0 (this last condition comes from enforcing coefficient 1/z in

expansion of W [4]
t around z =∞ to be 1).

3.1.15 The density ρ
[4]
t and explicit description of e[4]

0 (t). Once they have this

candidate function W [4]
t , the authors of [5] use (3.1.12) once more to obtain

(3.1.16) ρ
[4]
t (x) =

1

π

√
β(t)2 − x2

(
1

2
+ 2tx2 + tβ(t)

)
,

which gives them a density that is expected to make the asymptotics (3.1.9) hold.

Using this, they found

e
[4]
0 (t) =

1

384

(
β(t)2 − 4

) (
36− β(t)2

)
− log

(
β(t)

2

)
=

∑
n=1

(−1)n+1 12n(2n− 1)!

n!(n+ 2)!
tn(3.1.17)

= 2t− 18t2 + 288t3 + . . . ,

and then verified that the first terms of the expansion do in fact agree with counts

of genus zero maps (3.1.3). Subsequent analysis by various authors then showed that

(3.1.17) does indeed give the generating function for genus zero maps (3.1.3). We will

elaborate on this below.

3.1.18 Comments. We remark that the above heuristic arguments relied not only

on the assumption that the asymptotics in (3.1.9) hold, but also on the fact that the

genus expansion (3.1.2) is more that just formal, in the sense that

lim
N→∞

1

N2
log Ẑ

[4]
N (t) = e

[4]
0 (t)

is an actual equality.

As expected from the correctness of the first terms of the expansion of e[4]
0 in

(3.1.17), many of the results and methods described in [5] have subsequently been

justified (some proofs were supplied by the authors of [5] themselves). In particular,

there are now mathematical proofs of the following facts:
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• The limit limN→∞−N−2 logZ
[4]
N (t) does exist for t > 0.

• The limit is the minimizer of the functional

I
[4]
t [σ] :=

∫
V

[4]
t (x)dσ(x) +

∫∫ (
log

1

|x− y|

)
dσ(x)dσ(y)

over the space of all Borel probability measures on R.

• This minimizer is unique for each t, and is given by ρ
[4]
t (x)dx with ρ

[4]
t as in

(3.1.16) as correctly claimed in [5].

• Any weak limit of the measures N−1
∑
δx∗i (t), where the x∗(t) satisfy (3.1.7)

converges weakly to ρ[4]
t (x)dx, so ρ[4]

t (x) is in fact the continuous version of the

minimizers x∗(t).

• The functions eg(t) are analytic in a neighborhood of zero, and the formal

identity
1

N2
log Ẑ

[4]
N (t)“ = ”e

[4]
0 (t) +

1

N2
e

[4]
1 (t) +

1

N4
e

[4]
2 (t) + . . .

can be interpreted as an asymptotic expansion in N in the sense that there

exists t0 > 0 and an N0 > 0 such that for all G ≥ 0 there exists a constant CG

such that∣∣∣∣∣ 1

N2
log Ẑ

[4]
N (t)−

(
e

[4]
0 (t) +

e
[4]
1 (t)

N2
+ . . .+

e
[4]
G (t)

N2G

)∣∣∣∣∣ < CG
N2G+2

for all t ∈ [0, t0] and N ≥ N0, and similar bounds hold for derivatives in t. This

in particular implies that

lim
N→∞

1

N2
log Ẑ

[4]
N (t) = e

[4]
0 (t)

is really the generating function for 4-valent genus zero diagrams.

• All of the above can be appropriately generalized to more general V of the form

V (x; t1, . . . , t2n) =
1

2
x2 + t1x+ t2x

2 + . . . t2nx
2n
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giving counts for arbitrary number of vertices of valences up to 2n, and under

further modifications, to polynomials with leading terms with odd exponents.

Most of the proofs of these statements can be found in the wonderful book [7] by

Percy Deift. The statement regarding the interpretation of the genus expansion as

an asymptotic expansion was proved in 2003 by Ercolani and McLaughlin in [12].

3.1.19 Comment regarding the saddle-point equation. We remark that for

general V , the analogue condition (3.1.10) is necessary, but not sufficient to charac-

terize the minimizer. This will be discussed in more detail in Chapter 5.

3.2 Physics literature on the partition function ẐN(t).

The large N asymptotics of the partition function N−2 log ẐN(t) was studied in the

physics literature in [6, 18, 20, 21, 13] because of its relation to colored triangulations,

even though no precise description of the “automorphism group” of these triangula-

tions is given. We present here a short summary of the heuristic arguments and

results from [6, 18, 20, 21], which we will subsequently expand in chapter 6. We will

refer to the authors of these papers in this section as the authors, but we remark that

the contents of each of these papers differs from what is presented here, and this a

summary of their ideas regarding the partition function ẐN(t), instead of the contents

of their papers. We will discuss the differences between the contents of their papers

and what is presented here in section 3.3.

The key fact about ẐN(t) that has been exploited in the physics literature is that

one can write ẐN(t) as an integral over the eigenvalues of one of the matrices, given

by

ẐN(t) =

∫
RN

∏
1≤i,j≤N

1√
1 + t2(λi + λj)2

dµev
N (λ),

as we stated in the introduction (1.3.4). We supply the details of this computation
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in chapter 6, which as a by-product shows that ẐN(t) exists for t ∈ R. By defining

YN(t) :=

∫
RN
e−N

∑
λ2i /2

∏
i<j

(λi − λj)2
∏
i,j

1√
1 + t2(λi + λj)2

dNλ.

one can further write

ẐN(t) =
YN(t)

YN(0)
.

In this way, the counting problem for colored triangulations is recast into the

framework of matrix integrals with a single matrix, similar to the one discussed in

section 3.1. Even though YN(t) is not of the form of the integrals discussed there

because of the extra product
∏

i,j in the integrand, the fact that YN(0) = Z
[4]
N (0) is

in both cases ZGUE
N as defined in 1.1.3, suggests that the same sort of approach may

be applicable, and this is what the authors exploit.

3.2.1 Assumption that t ∈ R and t > 0. From now on we will assume that t ∈ R

(which is not always the case in the papers [6, 18, 20, 21, 13]), which guarantees that

the quantities above are defined and the equalities hold. When needed below, we will

further assume that t > 0.

3.2.2. Following the same collection of ideas in [5] that we summarized in section

3.1, the authors assume that

1

N2
log YN(t) '

N→∞

∫
1

2
x2ρt(x)dx+

∫∫ (
log

√
1 + t2(x+ y)2

|x− y|

)
ρt(x)ρt(y)dxdy,

where the probability density ρt(x) satisfies the saddle-point equation

(3.2.3) x = p.v.

∫
2ρt(y)

x− y dy −
∫ (

t

t(x+ y) + i
+

t

t(x+ y)− i

)
ρt(y)dy

for x ∈ supp ρt, which is the analogue of (3.1.10).

They further assume that ρt is continuous, even, and is supported on a single

interval [−βt, βt] where βt depends on some unknown way on t, and the write (3.2.3)

in terms of

Wt(z) :=

∫
R

ρt(y)

z − ydy,
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as (using that Wt is odd since ρt is even)

(3.2.4) x = Wt(x+ i0) +Wt(x− i0)−Wt

(
x− i

t

)
−Wt

(
x+

i

t

)
,

for x ∈ [−βt, βt], which is the analogue of (3.1.14) above. Again, Wt(z) is assumed to

have finite boundary values on [−βt, βt], and the fact that ρt is a probability density

implies that

Wt(z) =
1

z
+

m1(t)

z2
+

m2(t)

z3
+ . . .

around z =∞, where

mi(t) :=

∫
xiρt(x)dx.

The main goal is again to try to identify the function Wt from its properties, and

in this way recover the unknown density ρt. This is completely analogous to what was

described in section 3.1, the only difference being that the equations are somewhat

more involved. In particular, equation (3.2.4) is degenerate for t = 0, and from now

on we assume that t > 0.

The authors then define the function

ζt(z) := z2 +
2i

t

(
Wt

(
z +

i

2t

)
−Wt

(
z − i

2t

))
,

which by the assumptions onWt is analytic outside the two cuts ±i/2t+[−βt, βt] and
has finite extensions to the cuts. The motivation behind the definition of ζt is that

the saddle-point equation (3.2.4) is equivalent to

(3.2.5) ζt

(
x+

i

2t
± i0

)
= ζt

(
x− i

2t
∓ i0

)
, x ∈ [−βt, βt],

and since Wt is odd (again, since ρt is assumed to be even), one can further check

that

ζt(−z) = ζt(z),(3.2.6)

ζt (z) = ζt(z).
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These symmetries imply that ζt is real valued on R and iR, and together with

(3.2.5) imply that boundary values of ζt along the two cuts ±i/2t+ [−βt, βt] are also

real. This suggests looking for functions with these properties, and the authors assume

that ζt must be come from some conformal map that maps the complement in the first

quadrant of the segment i/2t+ [0, βt] onto the upper half plane, and is then extended

to the complement in the whole complex plane of the two cuts ±i/2t + [−βt, βt] by
enforcing the symmetries (3.2.6).

Explicitly, the authors first consider a Schwarz-Christoffel map SC(s; t, β) that

maps the upper half plane to the complement in the first quadrant of the segment

i/2t+ [0, β] (see figure 3.1), were they allow β to be independent of t. They then let

Γ(z; β, t) be the inverse of SC, and extend Γ(z; β, t) analytically to the complement

in the whole complex plane of the two cuts ±i/2t+ [−β, β] by defining

Γ(−z; β, t) = Γ(z; β, t),

Γ (z; β, t) = Γ(z; β, t).

Γ(z;β, t)

SC(s;β, t)

0

i

2t

β

Figure 3.1. The Schwarz-Christoffel map SC and its inverse Γ

Now, the expansion of ζt at ∞ can be computed to be given by

(3.2.7) ζt(z) = z2 +

(
2

t2

)
1

z2
+

(
12t2m2(t)− 1

2t4

)
1

z4
+ . . . ,

and the authors then find conditions on real constants a1 and a2 so that a1Γ+a2 has an

expansion of the form z2 + (2/t2)z−2 +O(1/z4) at infinity. These constants a1, a2 are
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given as polynomials in parameters b1, b2, b3 that come from choosing the pre-images

of the vertices in the Schwarz-Christoffel map, and so depend in a complicated way

on t and β (they are related by equations involving elliptic integrals, which we discuss

in detail in chapter 6). The expansion a1Γ +a2 = z2 + (2/t2)z−2 +O(1/z4) at infinity

not only makes a1 = a1(β, t) and a2 = a2(β, t) depend on β and t in a transcendental

way, but also imposes an algebraic relation between b1, b2, b3 and t.

The authors then assume that there is a solution to these relations, and assume

that ζt agrees with the corresponding map a1Γ+a2. Using this assumption and (3.2.7)

allows them to extract the second moment m2(t) of the density ρt in terms of b1, b2,

b3 and t by comparing the coefficients of 1/z4 in the expansion at infinity.

This second moment is in a sense all they are looking for to obtain the genus zero

generating function e0(t), because defining

dρN,t(λ) :=
1

YN(t)
e−N

∑
λ2i /2

∏
i<j

(λi − λj)2
∏
i,j

1√
1 + t2(λi + λj)2

dNλ,

they claim that the relation

(3.2.8) t
d

dt

[
1

N2
log ŶN(t)

]
= −1 +

∫
RN

(
1

N

∑
λ2
i

)
dρN,t(λ),

(which one obtains by making a change of variables scaling the λ by t), becomes in

the limit N →∞

(3.2.9) t
d

dt

[
lim
N→∞

1

N2
log ŶN(t)

]
= −1 + m2(t),

which by the genus expansion then would give

te′0(t) = −1 + m2(t).

Using the equations they have relating all the parameters, they then compute the

first coefficients of m2(t)

m2(t) = 1− 2t2 + 14t4 − 138t6 + . . .
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which then gives them the first terms in the expansion for e0(t)

e0(t) = − 2

2!
t2 +

84

4!
t4 − 16560

6!
t6 + . . . ,

which agrees with counts of colored triangulations that one can make for low values

of n.

3.2.10. We remark that the above heuristics rely on the following assumptions:

• The existence of the limit limN→∞N−2 log ẐN(t).

• The fact that there exists a probability density for which ρt for which

lim
N→∞

1

N2
log YN(t) =

∫
1

2
x2ρt(x)dx+

∫∫
log

(√
1 + t2(x+ y)2

|x− y|

)
ρt(x)ρt(y)dxdy.

• The fact that ρt is continuous, even, compactly supported on a single interval,

and sufficiently well behaved so that the Sokhotski-Plemelj formulas (3.1.12)

are applicable.

• The equality of ζt with the conformal map a1Γ + a2.

• The fact that (3.2.8) does become (3.2.9) as N → ∞, which not only involves

commuting the N →∞ limit and the derivative in t, but also as relies heavily

on the fact that the minimizer the functional

It[µ] :=

∫
1

2
x2dµ(x) +

∫∫
log

(√
1 + t2(x+ y)2

|x− y|

)
dµ(x)dµ(y),

is unique (a fact we will prove in chapter 5).

• The equality limN→∞N−2 log ŶN(t) = e0(t) (a weak version of the asymptotic

expansion discussed in 3.1.18 in this setting).

3.2.11. In the following chapters we will provide proofs for all of the bullets in 3.2.10

but the last one, which we regrettably have been unable to prove for the moment.
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We remark that because of the extra product
∏

i,j in YN , the mathematical literature

that deals with the asymptotics of these sorts of integrals is not directly applicable.

We will develop the relevant theory in chapter 4.

We will also use the formulas relating the parameters b1, b2, b3 with β and t, and

the algebraic relation between b1, b2, b3 and t to show that this system of equations

defines β as a real analytic function of t with an analytic extension to t = 0, in

analogy with the results discussed in section 3.1. We will also show that b1, b2, b3, and

also a1, a1 are analytic in t for t > 0 and analyze their behaviour around t = 0. We

will use this to prove that ρt(x) with x in the interior of its support is analytic in t

for t > 0.

3.3 Comments regarding the physics literature.

We discuss here the relation between the contents of the papers [6, 18, 20, 21, 13],

and what we discussed in section 3.2.

3.3.1. Cicuta in [6] mentions the combinatorial model ẐN(t) for colored triangula-

tions, and presents the reduction to the eigenvalues of just one of the matrices ŶN(t),

but then proceeds to simplify the model, and so does not study ŶN(t) directly.

3.3.2. Hoppe in [18] was studying a related partition function

ỸN(t) :=
1

tN2

∫
e−N

∑
Vt(λi)

∏
i<j

(λi − λj)2
∏
i,j

1√
1 + (λi − λj)2

dNλ

(note the negative sign in the term inside the square root), where

Vt(x) :=
1

2t2
x2.

This integral comes from the two matrix model with interaction [A,B]2 where [A,B]

is the commutator of the two matrices.
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Hoppe provides the heuristic arguments for the leading order asymptotics of ỸN ,

introduces the map ζt, and has the idea of identifying it with the inverse of a Schwarz-

Christoffel map, but does not complete the computations to find the analogue of e0(t).

3.3.3. Kazakov, Kostov and Nekrasov in [20] complete the computations for Ỹ (t)

while changing the approach with the parameters of the Schwarz-Christoffel map

and the associated elliptic integrals, and in 3.2 and chapter 6 we have followed and

completed Hoppe’s original approach since the authors of [20] start with an overly

conditioned system of equations for the parameters of the conformal map Γ that can

be justified only once one has proved it existence. Kazakov, Kostov and Nekrasov

then claim that the large N asymtotics do not change in the large N limit if one

replaces (λi + λj) by (λi − λj) in ỸN(t), giving a rescaled version of YN(t) (we will

explain what we mean by this in 3.3.4), and so claim their solution applies to colored

triangulations. We will prove that their claim is correct, once we show that the

minimizing ρt is in fact and even function.

3.3.4. Both papers [18, 20] we have mentioned perform their constructions with

the eigenvalues rescaled by t, and this rescaling results in a generalized density of

eigenvalues ρ̃t (we are using this term loosely to refer to the analogue of ρt) that

has vanishing support as t → 0, i.e., it is converging to a point mass at the origin.

This is expected since before the scaling, for t = 0 the limiting density is the Wigner

semicircle law ρ0(x) = (2π)−1
√

4− x2, and ρ̃t can then be seen to be given by

ρ̃t(x) =
1

t
ρt

(x
t

)
.

3.3.5. Kostov in [21] does directly discuss YN(t), but does so for the case when t is

purely imaginary where we see issues with the convergence of the integral YN , and

the density ρt being real valued. We will not be discussing this situation careful, and

will be assuming throughout that t is real, except when discussing the analyticity of
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various quantities as functions of t.

3.3.6. Finally, Eynard and Kristjansen in [13] take an alternate approach to analyze

the saddle-point equation which leads them to an iterative (and formal) procedure to

obtain the coefficients of e0, but does not give a closed form expression like the one

we described in section 3.2.
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Chapter 4

Leading order asymptotics

In this chapter we will study the leading order asymptotics of N−2 logZV,H
N as N →∞

where

ZV,H
N :=

∫
e−N

∑
V (xi)

∏
i<j

(xi − xj)2
∏

1≤i,j≤N

1

H(xi, xj)
dNx.

In particular, we show that under reasonable hypothesis on V and H, the limit

lim
N→∞

1

N2
logZV,H

N ,

exists.

4.1 Setup and heuristics.

Following the heuristics we discussed in section 3.1, writing the integrand in ZV,H
N as

an exponential we obtain

exp

[
−N2

(
1

N

∑
i

(
V (xi) +

1

N
logH(xi, xi)

)
+

1

N2

∑
i 6=j

log
H(xi, xj)

|xi − xj|

)]
,

and as N → ∞, we expect the main contributions to the integral to come from the

minimums of the expression being multiplied by −N2. Assuming the existence of a

limiting density ρV,H for the measure 1
N

∑N
i=1 δx∗i where x = (x∗1, . . . , x

∗
N) minimizes

the expression being multiplied by −N2, and assuming that the N−1 logH(x, x) term

is negligible in the large N limit, one expects that limN→∞−N−2 logZV,H
N , if it exists,

should be equal to∫
V (x)dρV,H(x)dx+

∫∫
log

H(x, y)

|x− y| dρV,H(x)dρV,H(y)dxdy,

which one can also write as∫∫ [
log

H(x, y)

|x− y| +
1

2
V (x) +

1

2
V (y)

]
dρV,H(x)dρV,H(y)dxdy,
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since ρV,H is a probability density.

Thus, one is led to analyze the functional∫∫ [
log

H(x, y)

|x− y| +
1

2
V (x) +

1

2
V (y)

]
dµ(x)dµ(y)

over the setM1(R) of all positive Borel probability measures on R and to relate this

to the asymptotics of N−2 logZV,H
N .

We will show that under reasonable assumptions, the above functional does have

minimizers, and that the asymptotics claimed above do hold. This will be done by

adapting the arguments for the case H ≡ 1 from Johansson’s paper [19] and Deift’s

book [7].

4.1.1 Notation. Throughout this chapter we will use the notation

IV,H [σ] :=

∫∫
KV,H d

2σ =

∫∫
KV,H(x, y) dσ(x)dσ(y),

where σ is a Borel probability measure, and where the kernel KV,H is given by

KV,H(x, y) := log
H(x, y)

|x− y| +
1

2
V (x) +

1

2
V (y).

Note that one has

IV,H [σ] =

∫
V dσ +

∫∫
log

H(x, y)

|x− y| dσ(x)dσ(y)

=

∫
V dσ +

∫∫
logH(x, y) d2σ +

∫∫
log

1

|x− y|dσ(x)dσ(y)

whenever the integrals exist and are finite.

We denote the infimum of IV,H [σ] over the setM1(R) of all positive Borel proba-

bility measures on R by

inf IV,H := inf
σ∈M1(R)

IV,H [σ].

4.1.2. We remark that IV,H [σ] may not exist for general KV,H , in which case the

definition of inf IV,H may lack meaning, but below we will assume conditions on KV,H

that guarantee that these quantities are well defined.
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4.2 Regularity assumptions.

Our arguments will apply to functions H,V satisfying the following regularity con-

ditions:

1. V is continuous.

2. H is continuous and H ≥ 1.

3. The function

ψV (x) := V (x)− log(x2 + 1)

tends to ∞ as |x| → ∞.

These regularity conditions imply the following facts that will be essential in the

arguments.

4.2.1 Lower bound for ψV . The growth condition on ψV implies that

ψV (x) ≥ minψV > −∞.

4.2.2 Bounds and growth of KV,H. Note that for all x, y in R we have that

|x−y| ≤
√

1 + x2
√

1 + y2 and so log |x−y|−1 ≥ −1
2

log[(x2 +1)(y2 +1)]. This implies

that

KV,H(x, y) ≥ logH(x, y) +
1

2

(
V (x)− log(x2 + 1)

)
+

1

2

(
V (y)− log(y2 + 1)

)
≥ 1

2
ψV (x) +

1

2
ψV (y),

since logH ≥ 0, and so we see that KV,H is bounded from below by minψV , and that

KV,H →∞ as |x|, |y| → ∞.

4.2.3 IV,H[σ] is well defined. Since KV,H is bounded from below, then IV,H [σ] =∫∫
KV,H d

2σ is a well defined element of (−∞,∞] for all σ ∈M1(R).
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4.2.4 Finiteness of inf IV,H. To see that inf IV,H < ∞, just take any measure

with compact support and finite logarithmic energy. For example, take dσ(x) =

χ[−1,1](x)dx where χ[−1,1](x) is the characteristic function of the interval [−1, 1]. Then

one has
∫ ∫

log |x − y|−1dσ(x)dσ(y) < ∞, and so IV,H [σ] < ∞ since by continuity,

logH(x, y) and V (x) are bounded in [0, 1]× [0, 1] and [0, 1] respectively. The fact that

−∞ < inf IV,H follows from the fact that K is bounded from below by the regularity

hypothesis.

4.2.5 Finiteness of
∫
R e
−V (x)dx. The growth condition on ψV implies that for |x|

large enough we have e−V (x) ≤ (1 + x2)−1, so that∫
R
e−V (x)dx <∞.

4.3 Statement of the theorems.

4.3.1 Definition of ZV,H
(N) . We will denote the integral without the diagonal term

in the double product
∏

i,j H(xi, xj)
−1 by

ZV,H
(N) :=

∫
e−N

∑
V (xi)

∏
i<j

(xi − xj)2
∏

1≤i 6=j≤N

1

H(xi, xj)
dNx.

This integral will play a very important role in the arguments that follow since it

will be easier to adapt the arguments in the literature to this integral, because the

delicate arguments occur along the diagonal where the logarithmic part log |x− y| of
the kernel is singular.

4.3.2 Theorem. If H and V satisfy the regularity conditions, then the limits

lim
N→∞

1

N2
logZV,H

N and lim
N→∞

1

N2
logZV,H

(N)

exist and are equal. The value of the common limit is given by

lim
N→∞

1

N2
logZV,H

N = − inf IV,H
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Moreover, there exists a measure µ∗ attaining the infimum

IV,H [µ∗] = inf IV,H = inf
σ∈M1(R)

IV,H [σ]

and any such measure has compact support, finite logarithmic energy and no point

masses.

We will prove theorem 4.3.2 in section 4.7, after having developed the relevant

results regarding the functional IV,H .

4.3.3 Extremal and equilibrium measures. We will refer to any measure µ∗

attaining the infimum

I[µ∗] = inf
σ∈M1(R)

I[σ],

as an extremal measure. If µ∗ is the unique measure satisfying this property, we

will call it, following the terminology for the case when H ≡ 1, the equilibrium

measure.

4.3.4. We remark that the requirement that the extremal measure be unique is a

common assumption in all the literature regarding these types of limits since this is

true case when H ≡ 1. In our adaptations of the arguments of [19], we show that

this assumption is not necessary for theorem 4.3.2 to hold. Nonetheless, if one does

have uniqueness of the extremal measure, one can prove stronger statements such as:

4.3.5 Theorem. If H and V satisfy the regularity conditions and the extremal mea-

sure µV,H of IV,H is unique, then for any continuous bounded function φ : Rk → R we

have

lim
N→∞

1

N
EN

[
exp

{
1

Nk−1

N∑
i1,...,ik=1

φ(xi1 , . . . , xik)

}]

= lim
N→∞

EN

[
1

Nk

N∑
i1,...,ik=1

φ(xi1 , . . . , xik)

]

=

∫
Rk
φ(x1, . . . , xk) dµV,H(x1) . . . dµV,H(xk),
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where EN [·] is expectation with respect to the probability measure with density

ρV,HN (x1, . . . , xN) :=
1

ZV,H
N

∏
1≤i,j≤N

1

H(xi, xj)

∏
i<j

(xi − xj)2e−N
∑N
i=1 V (xi).

Furthermore, if uV,HN (x1, . . . , xk) is the k-point function of ρV,HN , given by

uV,HN (x1, . . . , xk) :=

∫
RN−k

ρV,HN (x1, . . . , xN)dxk+1dxk+2 . . . dxN ,

then for every continuous bounded function φ : Rk → R we have

lim
N→∞

∫
Rk
φ(x1, . . . , xk)u

V,H
N (x1, . . . , xk)dx1 . . . dxk

=

∫
Rk
φ(x1, . . . , xk) dµV,H(x1) . . . dµV,H(xk).

We will prove theorem 4.3.5 in section 4.8.

4.3.6. We remark that the condition that φ be bounded in the above theorem can

be relaxed by imposing extra growth conditions on V . For example, if V grows

faster than a logarithm, then the functions φ in the theorem are allowed to grow like

polynomials. We will discuss these matters in section 4.8.

4.3.7 Generalization to allow H to be bounded by an arbitrary constant.

We remark that the condition H ≥ 1 in the regularity hypothesis 4.2 can be relaxed

to

H ≥ cH > 0,

for some constant cH and the statements of the theorems above will still hold. What

one really needs in many of the arguments is to be able to separate

log
H(x, y)

|x− y| = logH(x, y) + log
1

|x− y|

without running into issues. The arguments become a little more cumbersome un-

der these more general hypothesis, and the generalizations once we have proved the
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theorems are usually simple, which is why we decided the keep the condition H ≥ 1

throughout.

For example, to prove that

lim
N→∞

1

N2
logZV,H

N = − inf
σ∈M1(R)

∫∫ [
log

H(x, y)

|x− y| +
1

2
V (x) +

1

2
V (y)

]
dσ(x)dσ(y)

with the relaxed hypothesis H ≥ cH > 0, note that ZV,H
N = c−N

2

H ZH̃,V
N where H̃ =

H/c ≥ 1, and so we have

− 1

N2
logZV,H

N = log cH −
1

N2
logZV,H̃

N .

One can then use the theorem on ZV,H̃
N to obtain

lim
N→∞

− 1

N2
logZV,H

N = log cH + inf IH̃,V ,

but we have

log cH + inf IH̃,V = inf
σ∈M1(R)

∫∫ [
log

H(x, y)

|x− y| +
1

2
V (x) +

1

2
V (y)

]
dσ(x)dσ(y).

by taking the log cH inside the integral for IH̃,V . This is precisely the same statement

for ZV,H
N as for ZV,H̃

N .

4.4 Existence of extremal measures.

We start the proof of theorem 4.3.2 by proving the existence of an extremal measure

and some of its properties.

4.4.1 Proposition. If V and H satisfy the regularity hypothesis, then there exists

an extremal measure µ∗ (i.e., IV,H [µ∗] = inf IV,H), and any extremal measure has

compact support, finite logarithmic energy
∫∫

log |x− y|−1dµ∗(x)dµ∗(y) <∞, and no

point masses. In particular, for any extremal measure µ∗ one has

inf IV,H = IV,H [µ∗] =

∫
V dµ∗ +

∫∫
logH d2µ∗ +

∫∫
log

1

|x− y|dµ
∗(x)dµ∗(y),

since all integrals are finite.
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The rest of this section is devoted to the proof of the above proposition.

4.4.2. The fact that any extremal measure has compact support follows from the

following lemma, which proves the even stronger statement that the measures that

are close to attaining the infimum inf IV,H have uniformly bounded support. The

proof is adapted from Chapter 1 in [26], and will considerably simplify the arguments

in the proof of proposition 4.4.1.

4.4.3 Lemma. If V and H satisfy the regularity hypothesis, then there exists a

constant T > 0 so that for every σ ∈ M1(R) with IV,H [σ] < inf IV,H + 1 and

supp σ * [−T, T ], there is a σ̃ ∈ M1([−T, T ]) with IV,H [σ̃] < IV,H [σ]. In partic-

ular, any extremal measure has support contained in [−T, T ].

Proof. By the regularity hypothesis we know that (see 4.2.2) KV,H ≥ 1
2
ψV (x) +

1
2
ψV (y), and so there exists a T > 0 so that

KV,H(x, y) > inf IV,H + 1 for (x, y) /∈ [−T, T ]2.

Now note that if IV,H [σ] < inf IV,H + 1, then σ([−T, T ]) > 0 since otherwise, by

letting A = [−T, T ]2 and B be its complement in R2, then the choice of T implies

that

inf IV,H + 1 > IV,H [σ] =

(∫∫
A

+

∫∫
B

)
KV,H d

2σ =

∫∫
B

KV,H d
2σ > inf IV,H + 1

which is clearly impossible. Define now

σ̃ =
1

σ([−T, T ])
· σ |[−T,T ],

and write the integral in IV,H [σ] as the sum of the integral over A = [−T, T ]2 and its

complement B. The choice of T implies that

IV,H [σ] > σ([−T, T ])2IV,H [σ̃] + (1− σ([−T, T ])2)(inf IV,H + 1),



52

(one would have equality if σ([−T, T ]) = 1, but we are excluding that case by assuming

supp σ * [−T, T ]). Since by hypothesis IV,H [σ] < inf IV,H + 1, this implies

IV,H [σ] > σ([−T, T ])2IV,H [σ̃] + (1− σ([−T, T ])2)IV,H [σ],

and this is equivalent to IV,H [σ̃] < IV,H [σ].

4.4.4 Tightness. We recall that a sequence of measures {σn} ⊆ M1(R) is tight

if for all ε > 0 there is an M such that σn({|x| ≥ M}) < ε for all n. The important

fact we will use is that a tight sequence {σn} ⊆ M1(R) has a weakly convergent

subsequence in M1(R). We remark that tightness is important to guarantee that

weak limits of measures do not loose mass. That is, if {σn} converges weakly to σ

and is tight, then σ(R) = 1. This may not be true without the hypothesis of tightness.

See [7, p. 135] for a discussion of these matters.

4.4.5 Existence of an extremal measure. Under the assumption that V and H

satisfy the regularity hypothesis, and by the above lemma, we can chose a sequence

σn ∈M1([−T, T ]) that gives the infimum

inf IV,H = lim
n→∞

IV,H [σn],

and since all σn have support contained in [−T, T ], the sequence is tight. Therefore,

we can further assume that the sequence is weakly convergent with limit measure µ∗ ∈
M1([−T, T ]) by what was discussed in 4.4.4. We will show that inf IV,H = IV,H [µ∗].

Let

fm(x, y) := min(m,KV,H(x, y)),

be a sequence of continuous functions that monotonically increase to KV,H(x, y) as

m→∞. By the simple inequality KV,H ≥ fm we have

IV,H [σn] =

∫∫
KV,H d

2σn ≥
∫∫

fm d
2σn
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and so, letting n→∞, we get

inf IV,H ≥ lim
n→∞

∫∫
fm d

2σn =

∫∫
fm d

2µ∗,

since the fm are continuous and bounded and σn ⊗ σn converge weakly to µ∗ ⊗ µ∗ in
M1([−T, T ]2). Letting then m → ∞ and using the monotone convergence theorem

(KV,H is bounded from below) we finally obtain inf IV,H ≥ I[µ∗], which proves that

inf IV,H = IV,H [µ∗].

4.4.6. To finish the proof of proposition 4.4.1 it only remains to prove that any

extremal measure µ∗ has finite logarithmic energy and has no point masses, but these

two facts follow easily from what has been proven. Explicitly, since sinceKV,H(x, x) =

∞ by the log |x− y|−1 term, dµ∗ can’t have any point masses since inf IV,H <∞. For

the finiteness of the logarithmic energy, note that V and logH are bounded in the

compact support of µ∗ and so

inf IV,H = IV,H [µ∗] =

∫∫ [
log

1

|x− y| + logH(x, y) +
1

2
V (x) +

1

2
V (y)

]
dµ∗(x)dµ∗(y)

can be finite only if
∫∫

log |x− y|dµ∗(x)dµ∗(y) <∞.

4.5 The finite dimensional kernel for ZV,H
(N) .

4.5.1 Comment about the (·) notation. In what follows we will systematically

index quantities using parenthesis (·) if we are dealing with the integral ZV,H
(N) defined

in 4.3.1 where we ignore the diagonal term. Indices without parentheses will be

reserved for when we consider the integral ZV,H
N involving the diagonal term.

4.5.2 Definition of S(N). We define the operator S(N) on functions of two variables

by

(S(N)f)(x1, . . . , xN) :=
∑

1≤i 6=j≤N
f(xi, xj)
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where f(x1, x2) is a function of two variables.

4.5.3 Definitions. For x = (x1, . . . , xN) ∈ RN define

S(N)KV,H(x) := (S(N)KV,H)(x) =
∑

1≤i 6=j≤N
KV,H(xi, xj),

d(N) :=
1

N(N − 1)
inf
x∈RN

S(N)KV,H(x),

where we note that

S(N)KV,H(x) =
∑
i 6=j

(
log

H(xi, xj)

|xi − xj|

)
+ (N − 1)

N∑
i=1

V (xi),

so that

exp
(
−S(N)KV,H(x)

)
= e−(N−1)

∑
V (xi)

∏
i<j

(xi − xj)2
∏
i 6=j

1

H(xi, xj)

which is very similar to the integrand of ZV,H
(N) defined in 4.3.1, the difference being

the factor of N − 1 instead of N in the sum of the V (xi).

4.5.4. We remark that the point in defining the above quantities is that by the above

equations we have

ZV,H
(N) =

∫
exp

[
−S(N)KV,H(x)−

∑
i

V (xi)

]
dNx,

and for large N →∞ we expect

exp

[
−S(N)KV,H(x)−

∑
i

V (xi)

]
= exp

[
−N2

(
1

N2
S(N)KV,H(x) +

1

N2

∑
i

V (xi)

)]

' exp

[
−N2 · 1

N2
S(N)KV,H(x)

]
' exp

[
−N2 · 1

N(N − 1)
S(N)KV,H(x)

]
.

The minimizers of S(N)KV,H(x), are the ones that will be playing the role of the

minimizers discussed in the heuristics of section 4.1 in the arguments that follow.
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4.5.5. We also remark that the expression

1

N(N − 1)
S(N)KV,H(x)

showing up in the definition of d(N) and in the heuristics above can be interpreted as

a double integral of KV,H with respect to a uniform discrete measure supported at

the xi, where the diagonal terms are excluded, as they have to be since KV,H(t, t) =

∞. Thus, d(N) is in some sense a finite version of inf IV,H , and in this section we

will prove that limN→∞ d(N) = inf IV,H , which will be a first step in proving that

limN−2 logZV,H
(N) = − inf IV,H .

4.5.6 The sequence {d(N)} is increasing. We remark that one can adapt the

proof in [7, p. 148], originally due to Fekete, to show that {d(N)} is in fact an

increasing sequence. We do not supply the details here.

4.5.7 Proposition. If V and H satisfy the regularity hypothesis, then

lim
N→∞

d(N) = inf IV,H .

Moreover, there exist x(∗) = (x
(∗)
1 , . . . , x

(∗)
N ) ∈ RN that attain the infimum defining

d(N), and if

ν(N) :=
1

N

∑
i

δ(x
(∗)
i ),

is the uniform discrete measure supported at one of these x(∗), then {ν(N)}N is tight,

and any weakly convergent subsequence of {ν(N)} converges weakly to an extremal

measure.

The proof of proposition 4.5.7 consists of paragraphs 4.5.8 to 4.5.13. After the

proof we discuss further generalizations.

4.5.8 Proof that d(N) ≤ inf IV,H. For any x ∈ RN we have

1

N(N − 1)
S(N)KV,H(x) ≥ d(N),
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and integrating on both sides with respect to dµ∗(x1) . . . dµ∗(xN) where µ∗ is any

extremal measure giving the infimum I[µ∗] = inf IV,H , we obtain inf IV,H ≥ d(N) since

the integral of each KV,H(xi, xj) is inf IV,H .

4.5.9 Existence of x(∗) ∈ RN attaining the infimum d(N). We have

exp
(
−S(N)KV,H(x)

)
= e−(N−1)

∑
V (xi)

∏
i<j

(xi − xj)2
∏
i 6=j

1

H(xi, xj)

≤ e−(N−1)
∑
V (xi)

∏
i<j

(xi − xj)2

since H ≥ 1, which reduces us to the case H ≡ 1. Deift in [7, p. 131] shows this last

quantity vanishes at infinity as follows: The inequality |x − y| ≤
√

1 + x2
√

1 + y2

implies that
∏

i<j(xi − xj)2 ≤∏i(1 + x2
i )
N−1, so that

e−(N−1)
∑
V (xi)

∏
i<j

(xi − xj)2 ≤
(∏

i

e−V (xi)(1 + x2
i )

)N−1

.

Now, e−V (x)(1+x2) = exp(−ψV (x)), and since −∞ < minψV ≤ ψV →∞ as |x| → ∞
by the regularity hypothesis, we get that e−V (x)(1+x2) < c for some constant c. Thus,

for any k = 1, . . . , N we have

e−(N−1)
∑
V (xi)

∏
i<j

(xi − xj)2 ≤ c(N−1)(N−1)(1 + x2
k)e
−V (xk) → 0

as |xk| → ∞, which proves the claim.

Since exp(−S(N)KV,H(x)) is continuous, the above argument proves that there are

x(∗) which attain the suppremum supx∈RN
[
exp(−S(N)KV,H(x))

]
, so that

d(N) =
1

N(N − 1)
S(N)KV,H(x(∗)).

4.5.10 Tightness of {ν(N)}N∈N. Define now

ν(N) =
1

N

N∑
i=1

δx∗i ,
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with x∗i as in 4.5.9. Then the inequality KV,H(x, y) ≥ 1
2
ψV (x) + 1

2
ψV (y) (from the

regularity hypothesis 4.2) implies that

d(N) =
1

N(N − 1)
S(N)KV,H

(
x(∗)) ,(4.5.11)

=
1

N(N − 1)

∑
1≤i 6=j≤N

KV,H

(
x

(∗)
i , x

(∗)
j

)
,

≥ 1

N(N − 1)

∑
1≤i 6=j≤N

1

2
ψV

(
x

(∗)
i

)
+

1

2
ψV

(
x

(∗)
j

)
,

=
1

N(N − 1)

N∑
i=1

ψV

(
x

(∗)
i

)
(N − 1),

=

∫
ψV dν(N).

Now, since ψV →∞ as |x| → ∞, for any L there exists andML so that ψV (x) ≥ L

for |x| > ML. Then, denoting by AL = [−ML,ML], and BL its complement in R, the

above inequality together with inf IV,H ≥ d(N) (from 4.5.8) give

inf IV,H ≥
∫
ψV dν(N) =

(∫
AL

+

∫
BL

)
ψV dν(N) ≥ −|minψV |+ L

∫
BL

ψV dν(N).

Letting L→∞ we see that we must have
∫
BL
ψV dν(N) → 0 so that the sequence

{ν(N)} is tight since ML →∞ as L→∞.

4.5.12 Definition of ν(∗). By tightness of {ν(N)}, there is a subsequence with a

weak limit ν(∗) ∈ M1(R). We will show below that ν(∗) is extremal, thus showing

that any weak limit of the ν(N) is extremal.

4.5.13 Proof that limN→∞ d(N) = inf IV,H and ν(∗) is an extremal measure.

For any real s we can integrate the function min (s,KV,H(x, y)) with respect to ν(N)⊗
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ν(N) since it is continuous and bounded from above and below, and we have

S(N)KV,H(x(∗)) =
∑

1≤i 6=j≤N
KV,H

(
x

(∗)
i , x

(∗)
j

)
,

≥
∑

1≤i 6=j≤N
min

[
s,KV,H

(
x

(∗)
i , x

(∗)
j

)]
,

=
∑

1≤i,j≤N
min

[
s,KV,H

(
x

(∗)
i , x

(∗)
j

)]
−Ns,

= N2

∫∫
min (s,KV,H(x, y)) dν(N)(x)dν(N)(y)−Ns,

so that

d(N) =
1

N(N − 1)
S(N)KV,H(x(∗)),

≥ N2

N(N − 1)

∫∫
min (s,KV,H(x, y)) dν(N)(x)dν(N)(y)− s

N − 1
.

Let now {Nk}k∈N be the subsequence of the N ’s that makes {ν(Nk)}k∈N converge

weakly to ν(∗) as k → ∞. Then, taking N → ∞ in the above inequality along this

subsequence we get

lim inf
k→∞

d(Nk) ≥
∫∫

min (s,KV,H(x, y)) dν(∗)(x)dν(∗)(y),

and then using monotone convergence letting s→∞ we obtain

lim inf
k→∞

d(Nk) ≥ I[ν(∗)] ≥ inf IV,H .

Since we already knew that inf IV,H ≥ d(N) from 4.5.8, we also have inf IV,H ≥
lim supk→∞ d(Nk), and this shows that limk→∞ d(Nk) = inf IV,H , and that I[ν(∗)] =

inf IV,H so that ν(∗) is extremal as claimed.

It remains to prove that the whole sequence {d(N)} converges to inf IV,H . We

remark that this would follow from inf IV,H ≥ lim sup d(N) and limk→∞ d(Nk) = inf IV,H

if we knew the sequence was increasing (see 4.5.6), but instead we give here a direct

argument. First note that (4.5.11) implies that

∞ > inf IV,H ≥ d(N) ≥
∫
ψV dν(N) ≥ minψV > −∞
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so that the sequence {d(N)} is bounded. Now, assume that {d(N ′k)}k∈N is any conver-

gent subsequence of {d(N)} and let

d′ = lim
k→∞

d(N ′k)

be its limit. Since {ν(N ′k)} is tight, we can further refine {N ′k} to {N ′′k } so that ν(N ′′k )

converges weakly to some ν ′′, say. If we repeat the above argument with the sequence

{N ′′k } instead of with {Nk} we obtain

inf IV,H ≥ lim
k→∞

d(N ′′k ) ≥ I[ν ′′] ≥ inf IV,H

and so d′ = inf IV,H , i.e., any convergent subsequence of {d(N)} converges to inf IV,H ,

and so limN→∞ d(N) = inf IV,H as claimed.

4.5.14. This concludes the proof of Proposition 4.5.7. With this at hand, we could

proceed to prove the part of Theorem 4.3.2 that pertains ZV,H
(N) , but we will instead

first discuss in section 4.6 how what we have proved is applicable to the integral ZV,H
N

involving the diagonal part of the double product involving the H’s .

4.5.15. We remark that if the extremal measure happens to be unique, then one can

adapt the arguments in [7, p. 147] to give the following generalization of proposition

4.5.7. We will not be needing this, so will not supply the details.

4.5.16 Proposition. If V and H satisfy the regularity hypothesis and the extremal

measure µ∗ is unique, then the whole sequence {ν(N)} converges weakly to µ∗.

4.6 Introduction of the diagonal term.

4.6.1. Note that one can move the diagonal term
∏

iH(xi, xi) to the “V ”-term in

ZV,H
N by writing

ZV,H
N =

∫
RN
e−N

∑
VN (xi)

∏
i<j

(xi − xj)2
∏

1≤i 6=j≤N

1

H(xi, xj)
dNx
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where

VN(x) := V (x) +
1

N
logH(x, x).

This is what was done in the heuristics of section 4.1 where we claimed that the

(1/N) logH(x, x) term should negligible. Note moreover, that we can write

ZV,H
N =

∫
RN

exp

(
−S(N)KN(x)−

∑
i

VN(xi)

)
dNx

where

KN(x, y) := KVN ,H(x, y)

= log
H(x, y)

|x− y| +
1

2
VN(x) +

1

2
VN(y),

and as usual,

S(N)KN(x) =
∑

1≤i 6=j≤N
KN(xi, xj).

Thus, by writing equations this way, we see that this setting is entirely analogous

to the one we described for ZV,H
(N) in section 4.5 (compare the formulas for ZV,H

(N) and

ZV,H
N involving S(N)K and S(N)KN respectively), but now we have a kernel KN that

depends on N through VN .

Let dN be the analogue of d(N), i.e.,

dN :=
1

N(N − 1)
inf
x∈RN

S(N)KN(x).

4.6.2 Proposition. If H and V satisfy the regularity hypothesis, then

lim
N→∞

dN = lim
N→∞

d(N) = inf IV,H .

We prove the proposition 4.6.2 below in 4.6.5. We start by proving facts that we

will need about the N dependent variational functional IN we define below.

4.6.3 N-dependent variational theory. Note that since logH ≥ 0 we have that

VN ≥ V, and this implies in particular that

ψN(x) := VN(x)− log(x2 + 1) ≥ ψV (x),
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so that VN and H satisfy the regularity hypothesis 4.2 if V and H do. Applying the

variational theory from 4.4 to the N -dependent variational problem

IN [σ] :=

∫∫
KN d

2σ,

where N = 1, 2, . . . and

FN := inf
σ∈M1(R)

IN [σ],

we see that FN is finite, and there an extremal measure µ∗N

FN = IN [µ∗N ],

with compact support, no point masses, and finite logarithmic energy.

4.6.4 Proof that limN→∞ FN = inf IV,H. Since logH ≥ 0 we have VN ≥ VN+1 ≥
V so that KN ≥ KN+1 ≥ KV,H . Thus,

F1 ≥ F2 ≥ . . . ≥ inf IV,H ,

which shows that the sequence {FN} converges since inf IV,H is finite.

If we let µ∗ be an extremal measure for IV,H , so that inf IV,H = IV,H [µ∗]. Then we

have

IN [µ∗] = IV,H [µ∗] +
1

N

∫
logH(x, x)dµ∗(x)

= inf IV,H +
1

N

∫
logH(x, x)dµ∗(x),

where
∫

logH(x, x)dµ∗(x) <∞ since logH is continuous and µ∗ has compact support.

Moreover, since IN [µ∗] ≥ FN by the definition of FN , we obtain

inf IV,H +
1

N

∫
logH(x, x)dµ∗(x) = IN [µ∗] ≥ FN

and letting N →∞ this gives inf IV,H ≥ limN→∞ FN so that

lim
N→∞

FN = inf IV,H ,
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as claimed.

4.6.5 Proof of proposition 4.6.2. Note that since KN ≥ KV,H , we also have

(4.6.6) dN ≥ d(N).

Then, just as in the proof that inf IV,H ≥ d(N) in 4.5.8, for any x we have

1

N(N − 1)
S(N)KN(x) ≥ dN ,

and integrating with respect to dµ∗N(x1) . . . dµ∗N(xN) where µ∗N is any extremal mea-

sure giving the infimum I[µ∗N ] = FN , we obtain FN ≥ dN . Combining this with

inequality (4.6.6) gives

FN ≥ dN ≥ d(N),

and letting N →∞ finally shows that

lim
N→∞

dN = inf IV,H ,

since limN→∞ d(N) = limN→∞ FN = inf IV,H .

4.6.7. We remark that with what we now have, one can follow the same arguments

as with the finite dimensional kernel for ZV,H
(N) to prove the following proposition.

4.6.8 Proposition. There is an x∗ ∈ RN which attains the infimum defining dN

dN =
1

N(N − 1)
S(N)KN(x∗),

and if we define

νN =
∑

δ(x∗i )

then the sequence {νN} is tight, and any weakly convergent subsequence of {νN} con-
verges weakly to an extremal measure for IV,H . Moreover, if the extremal measure µ∗

is unique, the whole sequence {νN} converges to µ∗ .

For the proof, one follows the above arguments with VN instead of V , and one

uses the contents of 4.6.3, and the inequalities VN ≥ V and KN ≥ KV,H to reduce to

arguments we have already presented. We do not include the details here.
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4.7 End of proof of theorem 4.3.2

In this section we will prove that if V and H satisfy the regularity hypothesis, then

(4.7.1) lim inf
N→∞

− 1

N2
logZV,H

(N) ≥ inf IV,H ,

and that

(4.7.2) lim sup
N→∞

− 1

N2
logZV,H

N ≤ inf IV,H .

From these two inequalities the remaining unproven statement of theorem 4.3.2

(equation (4.7.3) below) will follow since since H ≥ 1 implies that ZV,H
N ≤ ZV,H

(N) and

so

− 1

N2
logZV,H

(N) ≤ −
1

N2
logZV,H

N ,

and one can take separately lim inf and lim sup on this inequality, which by (4.7.1)

and (4.7.2) immediately implies that

(4.7.3) lim
N→∞

− 1

N2
logZV,H

(N) = lim
N→∞

− 1

N2
logZV,H

N = inf IV,H .

Thus, to conclude the proof of theorem 4.3.2 it only remains to prove (4.7.1) and

(4.7.2), which we now do.

4.7.4 Proof of (4.7.1). Note that

ZV,H
(N) =

∫
RN

exp

[
−S(N)KV,H(x)−

∑
i

V (xi)

]
dNx,

≤
∫
RN

exp

[
−N(N − 1)d(N) −

∑
i

V (xi)

]
dNx,

= e−N(N−1)d(N)

(∫
R
e−V (x)dx

)N
,

since d(N) := (N(N − 1))−1 infx∈RN S(N)KV,H(x). This shows that

− 1

N2
logZV,H

(N) ≥
N(N − 1)

N2
d(N) −

1

N
log

∫
R
e−V (x)dx,
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and letting N → ∞ (recall that
∫
R e
−V (x)dx < ∞ by the growth conditions of ψV ),

we obtain

lim inf
N→∞

− 1

N2
logZV,H

(N) ≥ lim
N→∞

d(N) = inf IV,H .

4.7.5 Lemma. Given ε > 0, there is a measure with continuous compactly supported

density φε(x) so that

IV,H [φε(x)dx] ≤ inf IV,H + ε/2.

Proof. Let

ψδ(x) =
1

2δ

∫ x+δ

x−δ
dµ∗(t)

where µ∗ is any extremal measure so that IV,H [µ∗] = inf IV,H . Since µ∗ has compact

support and that it has no point masses, it follows that ψδ(x) is continuous and has

compact support. Moreover, one can check that ψδ(x)dx is a probability measure,

and that ψδ(x)dx converges weakly to µ∗ as δ → 0 (both facts follow by interchanging

orders of integration). We show that limδ→0 IV,H [ψδ(x)dx] = IV,H [µ∗] = inf IV,H which

will prove the claim.

First recall that

IV,H [σ] =

∫∫ [
log

1

|x− y| + logH(x, y) +
1

2
V (x) +

1

2
V (y)

]
dσ(x)dσ(y)

where H ≥ 1 and V are continuous. It follows that by the weak convergence and the

fact that the ψδ have compact support that∫∫ [
logH(x, y) +

1

2
V (x) +

1

2
V (y)

]
dψδ(x)dψδ(y)dy

converges as δ → 0 to∫∫ [
logH(x, y) +

1

2
V (x) +

1

2
V (y)

]
dµ∗(x)dµ∗(y)

so we only have to worry about the log |x − y|−1 term. This reduces us to the case

H ≡ 1, and the details are worked out in [7, p.150].
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4.7.6 Proof of (4.7.2). Let ε > 0, and set E = {x ∈ R | φε(x) > 0} where φε is as
given by the lemma. Then we have

ZV,H
N =

∫
RN

exp

[
−S(N)KN(x)−

∑
i

VN(xi)

]
dNx

≥
∫
EN

exp

[
−S(N)KN(x)−

∑
i

VN(xi)

]
dNx

=

∫
EN

exp

[
−S(N)KN(x)−

∑
i

VN(xi)−
∑
i

log(φε(xi))

]∏
i

φε(xi)d
Nx,

and if we then use Jensen’s inequality∫
ef(x)dσ(x) ≥ e

∫
f(x)dσ(x),

with the probability measure dσ(x) =
∏

i φε(xi)d
Nx, one obtains

logZV,H
N ≥ −

∫
EN

S(N)KN(x)
∏
i

φε(xi)d
Nx−

∫
EN

∑
i

VN(xi)
∏
i

φε(xi)d
Nx

−
∫
EN

∑
i

log(φε(xi))
∏
i

φε(xi)d
Nx

= −N(N − 1)IN [φε]−N
∫
E

VN(x)φε(x)dx−N
∫
E

log φε(x)φε(x)dx.

Note that since φε has compact support then
∫
E

log φε(x)φε(x)dx is finite, and

VN(x) is bounded in E. Thus, if we denote by Vε = maxx∈E V (x) and Cε =

maxx∈E logH(x, x) we have for x ∈ E∫
E

VN(x)φε(x)dx ≤ Vε +
1

N
Cε

so that
1

N2
logZV,H

N ≥ −N(N − 1)

N2
IN [φε] +

Dε

N
− Cε
N3

,

for some constant Dε that depends on ε. This implies that

lim inf
N→∞

1

N2
logZV,H

N ≥ −IV,H [φε]
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since

lim
N→∞

IN [φε] = lim
N→∞

IV,H [φε] +
1

N

∫
logH(x, x)φε(x)dx

= IV,H [φε],

as
∫

logH(x, x)φε(x)dx is finite by the compact support of φε(x)dx. By the choice of

φε, we have

(4.7.7) lim inf
N→∞

1

N2
logZV,H

N ≥ −(inf IV,H + ε/2),

and this implies (4.7.2) since ε was arbitrary.

4.8 Large deviation estimates and proof of theorem 4.3.5

In this section we discuss some of the details of the proof of theorem 4.3.5, as well

as its strengthenings under stronger hypothesis on the growth of V . We start by

showing that the large deviation estimate, which is one of the key ingredients in the

proof from [7] for the case H ≡ 1 continues to hold.

We let

ρV,HN (x) :=
1

ZV,H
N

e−N
∑
V (xi)

∏
i<j

(xi − xj)2
∏
i,j

1

H(xi, xj)
,

be the probability density in RN associated to ZV,H
N , and given c > 0 we define the

(compact) set

AN,c =

{
x ∈ RN :

1

N2
S(N)KN(x) ≤ inf IV,H + c

}
.

4.8.1 Lemma (Large deviation estimate). If V and H satisfy the regularity hypothesis

4.2, then for any c > 0 there exists an Nc so that for N ≥ Nc and any constant a ≥ 0

one has

µV,HN (RN \ AN,c+a) ≤ e−aN
2

,

where µV,HN is the probability measure with density ρV,HN .
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Proof. Since limN→∞N−2 logZV,H
N = − inf IV,H , it follows that given ε > 0 there is

an Nε such that for N ≥ Nε we have

1

N2
logZV,H

N ≥ −(inf IV,H + ε).

Using this bound one can remove the ZV,H
N term in computations of probabilities with

respect to ρV,HN (x)dx since for N ≥ Nε we will have ZV,H
N ≥ exp(−N2(inf IV,H + ε)),

and so, for any borel set A we have (recall 4.6.1)

µV,HN (A) =
1

ZV,H
N

∫
A

e−N
∑
VN (xi)

∏
i<j

(xi − xj)2
∏
i 6=j

1

H(xi, xj)
dNx

≤ eN
2(inf IV,H+ε)

∫
A

e−N
∑
VN (xi)

∏
i<j

(xi − xj)2
∏
i 6=j

1

H(xi, xj)
dNx

= eεN
2

∫
A

exp
[
−S(N)KN(x)−

∑
VN(xi) +N2 inf IV,H

]
dx,

as long as N ≥ Nε.

In particular, taking A = RN \ AN,c+a we have by the definition of AN,c+a that

−S(N)KN(x) +N2 inf IV,H < −N2(c+ a),

for x ∈ A = RN \ AN,c+a, and so

µV,HN (R \ AN,c+a) ≤ eεN
2

∫
A

exp
[
−
∑

VN(xi)−N2(c+ a)
]
dNx

= e−N
2(c+a−ε)

∫
A

exp
[
−
∑

VN(xi)
]
dNx

≤ e−N
2(c+a−ε)

(∫
R
e−VN (x)dx

)N
≤ e−N

2(c+a−ε)
(∫

R
e−V (x)dx

)N
since VN ≥ V (recall that

∫
e−V <∞ by the regularity hypothesis 4.2). Now taking

ε = ε(c) < c/2 (note that ε was arbitrary until now) the above estimates give that

for N ≥ Nε

µV,HN (R \ AN,c+a) ≤ e−N
2ae−N

2c/2 (const.)N
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and then we can find Nc ≥ Nε so that for N ≥ Nc we have

µV,HN (R \ AN,c+a) ≤ e−N
2a,

and this concludes the proof of the Lemma.

4.8.2. As mentioned above, the large deviation estimate from lemma 4.8.1 is the

essential ingredient in the proof of theorem 4.3.5. The proof is considerably long, but

with what has been worked out here, it is essentially no different than the proof in

[7] for the case H ≡ 1. We consider it illuminating to show how the large deviation

estimate and the uniqueness of the extremal measure are used in the proof, and so we

include here a proof of the special case that if φ : R→ R is continuous and bounded,

then

(4.8.3) lim
N→∞

1

ZV,H
N

∫
RN

(
1

N

N∑
i=1

φ(xi)

)
ρV,HN (x)dNx =

∫
φ(s)dµV,HN (s).

We prove (4.8.3) in paragraph 4.8.5. For the proof we will need the following lemma:

4.8.4 Lemma. If V and H satisfy the regularity hypothesis, η > 0 is arbitrary,

a = (a
(η)
1 , . . . , a

(η)
N ) ∈ AN,2η, and we define

νη,N :=
1

N

∑
δ
a
(η)
i
,

then {νη,N}N is tight, and any weak limit νη of {νη,N}N satisfies

IV,H [νη] ≤ inf IV,H + 2η.

Moreover, if one takes η = 1/n and uses the above result to obtain weak limits ν1/n

for n = 1, 2, . . ., then the sequence {ν1/n}n is tight, and any weak limit converges to

an extremal measure of IV,H .

Proof. By definition of AN,2η we have

inf IV,H + η ≥ 1

N2
SNKN(a) ≥ N − 1

N2

∑
ψV (ai) =

N − 1

N

∫
ψV (x)dνη,N(x),
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(since KN(x, y) ≥ ψN(x)/2 + ψN(y)/2 ≥ ψV (x)/2 + ψV (y)/2). Thus∫
ψV (x)dνη,N(x) ≤ const.

which shows that {νη,N}N is tight as ψV (x) → ∞ as |x| → ∞. Let νη be any weak

limit (say for N = Nj with j →∞), then we have∫∫
min(l,KN(x, y))dνη,N(x)dνηN(y) ≤ SNKN(a) + diagonal terms

≤ l

N
+ inf IV,H + 2η

by the definition of AN,2η. Now take Nj → ∞, and then take l → ∞ which shows

that IV,H [νη] ≤ inf IV,H + 2η and concludes the first part of the statement.

For the second part, take η = 1/n and and obtain the weak weak limits ν1/n

for n = 1, 2, . . .. Now note that by the inequality
∫
ψV (s)dρη,N(s) ≤ const. from

above, we have that
∫

(ψV (s)−minψV ) dνη,N(s) ≤ const. too, where the integrand

is positive. Now, for any b > 0 we have by weak convergence that∫ b

−b
(ψV (s)−minψV ) dνη(s) = lim

j→∞

∫ b

−b
(ψV (s)−minψV ) dνη,Nj(s)

≤ lim
j→∞

∫ ∞
−∞

(ψV (s)−minψV ) dνη,Nj(s)

≤ lim
j→∞

const. = const.

Thus, for any b > 0 we have
∫ b
−b (ψV (s)−minψV ) dνη(s) ≤ const., and taking b→∞

using monotone convergence we get∫
(ψV (s)−minψV ) dνη(s) ≤ const.

which implies that {ν1/n}n is tight.

Let ν be a weak limit of the sequence, then∫∫
min(l,KN)d2ν1/n ≤ IV,H [ν1/n] ≤ inf IV,H +

2

n

and taking n→∞ we get
∫∫

min(l,KN)d2ν ≤ inf IV,H . Finally, taking l→∞ shows

that IV,H [ν] ≤ inf IV,H and so ν is extremal.
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4.8.5 Proof of (4.8.3). Say |φ| ≤ C, then we have∫
RN

(
1

N

N∑
i=1

φ(xi)

)
ρV,HN (x)dx =

(∫
AN,2η

+

∫
RN\AN,2η

)[
1

N

N∑
i=1

φ(xi)

]
ρV,HN (x)dNx

≤ C µV,HN (RN \ AN,2η)

+

∫
AN,2η

(
1

N

N∑
i=1

φ(xi)

)
ρV,HN (x)dNx

and so by the large deviation estimates 4.8.1 we have

lim sup
N→∞

∫ (
1

N

N∑
i=1

φ(xi)

)
ρV,HN (x)dx = lim sup

N→∞

∫
AN,2η

(
1

N

N∑
i=1

φ(xi)

)
ρV,HN (x)dx.

Since AN,2η is compact, there is x∗ = (x∗i ) such that(
1

N

N∑
i=1

φ(x∗i )

)
= sup

x∈AN,2η

(
1

N

N∑
i=1

φ(xi)

)
,

and using this we can write

lim sup
N→∞

∫ (
1

N

N∑
i=1

φ(xi)

)
ρV,HN (x)dx ≤ lim sup

N→∞

(
1

N

N∑
i=1

φ(x∗i )

)
µV,HN (AN,2η)

= lim sup
N→∞

(
1

N

N∑
i=1

φ(x∗i )

)
= lim sup

N→∞

∫
φ(s)dµη,N(s)

where

µη,N =
1

N

∑
δx∗i

is the measure supported at these maximizers.

Now, chose a subsequence Nj of the N that makes the integrals on the right

converge to the corresponding lim sup. By the lemma, the sequence {µη,N}N is tight,

and so, the from the subsequence {µη,Nj}j we may chose a further subsequence (which

we will contunue to denote by Nj) with weak limit µη so that

lim sup
N→∞

∫
φ(s)dµη,N(s) = lim

j→∞

∫
φ(s)dµη,Nj(s)

=

∫
φ(s)dµη(s)
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since φ is continuous and bounded. Thus, we get

lim sup
N→∞

∫ (
1

N

N∑
i=1

φ(xi)

)
ρV,HN (x)dNx ≤

∫
φ(s)dµη(s),

for every η > 0.

Using the second statement in the lemma, let µ be a weak limit of {µ1/n}n, so that

µ is extremal. Then taking the limit as n → ∞ on the right of the above equation

we get

lim sup
N→∞

∫ (
1

N

N∑
i=1

φ(xi)

)
ρV,HN (x)dNx ≤

∫
φ(s)dµ(s),

again using the fact that φ is bounded and continuous.

One now repeats the whole argument with liminf taking as x∗ the infimum of

N−1
∑N

i=1 φ(x∗i ) over AN,η (this is why we stated the lemma separately) to obtain∫
φ(s)dµ̃(s) ≤ lim inf

N→∞

∫ (
1

N

N∑
i=1

φ(xi)

)
ρV,HN (x)dNx.

Now use uniqueness of the extremal measures to conclude that µV,H = µ̃ = µ, and

so we finally conclude that

lim
N→∞

∫ (
1

N

N∑
i=1

φ(xi)

)
ρV,HN (x)dNx =

∫
φ(s)µV,H(s).

4.8.6 Relaxation on the condition that φ be bounded. Under stronger as-

sumptions on the growth on V , one can be generalize 4.3.5 to more general φ. For

example, if V grows faster than a logarithm (e.g., like (log |x|)1+ε for some ε > 0),

then one can prove that (4.8.3) holds for polynomial φ. One way to do this is by

using the bound on the one point function uV,HN (t) given in lemma 4.8.7 below, which

can be used to show that the integral outside a compact set is negligible in the limit

N →∞.
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4.8.7 Lemma. If V and H satisfy the regularity assumptions, then there is a constant

C so that

uV,HN (t) ≤ eCN(1 + t2)Ne−NV (t).

Lemma 4.8.7 follows directly from the corresponding statement for the case H ≡ 1

given in lemma 4.4 in [19], under the assumption that H ≥ 1. For the more general

situation H ≥ cH > 0, one needs to adapt the proof given there, and use the large

deviation estimate 4.8.1.
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Chapter 5

Variational Inequalities

In this chapter we present a criterion which characterizes extremal measures analogous

to the one described in [7] for logarithmic potentials with external fields. The criterion

will apply to symmetric positive (semi-)definite kernels, which we define below. Using

this, we will obtain a verifiable characterization of the extremal measure for kernels of

the form KV,H , and we then show that the kernel for colored triangulations satisfies

the properties that guarantee the criterion is applicable.

5.1 Extremal measures for positive (semi-)definite kernels.

In this section we will assume that the kernel K(x, y) is real valued and bounded

from below on compact sets. To make equations less cluttered below, we will use the

notation ∫∫
Kdσdµ :=

∫∫
K(x, y)dσ(x)dµ(y),∫∫

Kd2σ :=

∫∫
K(x, y)dσ(x)dσ(y),

for general signed measures σ, µ on R. We will reserve the notation

IK [σ] :=

∫∫
Kd2σ,

for probability measures and will not use it for general signed measures.

5.1.1 Positive (semi-)definite kernels. We say that a kernel K(x, y) that is

bounded from below on compact sets is positive semi-definite if for any signed

measure ν with mean zero and compact support one has

(5.1.2)
∫∫

K
(
dν+dν+ + dν−dν−

)
≥
∫∫

K
(
dν+dν− + dν−dν+

)
,
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where ν = ν+− ν− is the decomposition of the measure into its positive and negative

parts. Note that all integrals in the above inequality are well defined elements of

(−∞,∞] since K(x, y) is bounded from below on the compact support of ν. We say

that the kernel is positive definite if it is positive semi-definite and equality holds

in 5.1.2 when both sides are finite only if ν = 0.

In the case when all the integrals in the inequality are finite, then the inequality

is equivalent to the more natural ∫∫
Kd2ν ≥ 0,

but this last integral may be undefined for general signed ν and K since we are

not assuming K is bounded from above (the prototypical example being K(x, y) =

log 1/|x− y|).

5.1.3 Remark. There is some closely related literature on potential theory which

is similar to the one we discuss below, for kernels for which
∫∫

K(x, y)dν(x)dν(y) ≥ 0

whenever ν is a measure for which the integral is defined (see for example [25]).

These kernels are referred to as kernels of positive type. This definition assumes the

finiteness of the integrals
∫∫

K (dν+dν+ + dν−dν−) and
∫∫

K (dν+dν− + dν−dν+) in

the cases when the inequality needs to hold, and this is not sufficient for our purposes

(see lemma 5.1.7 and 5.1.8 below). The analogues of positive definite kernels in this

context are called kernels satisfying the energy principle. We will not be using this

terminology here.

5.1.4 Symmetric kernels. We say that the kernel K is symmetric if K(x, y) =

K(y, x) for all x, y. Note that in the case when K is symmetric, the inequality in the

definition of positive semi-definiteness can be written in the form

(5.1.5)
∫∫

K
(
d2ν+ + d2ν−

)
≥ 2

∫∫
Kdν+dν−,

since
∫∫

Kdν+dν− =
∫∫

Kdν−dν+ ∈ (−∞,∞].
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5.1.6 Definition. We say that a measure σ ∈ M1(R) is decent (with respect to

K) if σ has compact support and IK [σ] <∞.

5.1.7 Lemma. If K is a symmetric positive semi-definite kernel that is bounded from

below on compact sets, and σ, µ are decent measures, then∫∫
Kd(a1σ + a2µ)d(b1σ + b2µ) <∞,

for any ai, bi ∈ R. In particular,
∫∫

Kd2(σ − µ) exists and we have∫∫
Kd2(σ − µ) ≥ 0

since K is positive semi-definite.

Proof. Since K is symmetric and bounded from below on the compact support of

σ⊗µ and µ⊗σ, we know that
∫∫

Kdσdµ =
∫∫

Kdµdσ are well defined as elements of

(−∞,∞]. Moreover, since σ and µ are decent, then
∫∫

Kd2σ and
∫∫

Kd2µ are finite,

and so by bilinearity it suffices to prove
∫∫

Kdσdµ =
∫∫

Kdµdσ is also finite. This

follows by using positive semi-defininiteness with the compactly supported mean zero

measure ν = σ − µ and inequality (5.1.5).

5.1.8. We remark that the technical definition of positive (semi-)definiteness was

made precisely so that the above lemma holds. Explicitly, we want the kernel itself

and the decency of the measures to imply the existence of the integral in the statement

of the lemma.

5.1.9. Let now K be a kernel that is bounded from below (not just on compact sets).

Because of the lower bound of K, the integral IK [σ] exists for all σ ∈M1(R), and we

can define

inf IK := inf
σ∈M1(R)

IK [σ],
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which we know is a well defined element of (−∞,∞]. As in the previous chapter, we

refer to any measure µ∗ attaining the infimum

inf IK = IK [µ∗],

as an extremal measure.

5.1.10 Theorem (Characterization of extremal measures for positive semi-definite

kernels). Let K be a positive semi-definite symmetric kernel that is bounded from

below, and assume that extremal measures exist and that any extremal measure is

decent (so in particular inf IK is finite). Then a decent measure µ∗ ∈ M1(R) is an

extremal measure if and only if∫∫
Kdµ∗dσ ≥

∫∫
Kd2µ∗ (= IK [µ∗]) ,

for any decent measure σ.

Proof. (⇒) Let σ be a decent measure, and note that for any t ∈ [0, 1] we have

µ∗ + t(σ − µ∗) = tσ + (1− t)µ∗ ∈M1(R),

so that we can write

IK [µ∗ + t(σ − µ∗)] = IK [µ∗] + 2t

∫∫
Kdµ∗d(σ − µ∗) + t2

∫∫
Kd2(σ − µ∗),

since all integrals involved are well defined and finite by lemma 5.1.7. Since µ∗ is

extremal, we have IK [µ∗] ≤ IK [µ∗ + t(σ − µ∗)], and so we conclude by the above

equality that

0 ≤ IK [µ∗ + t(σ − µ∗)]− IK [µ∗] = t

(
2

∫∫
Kdµ∗d(σ − µ∗) + t

∫∫
Kd2(σ − µ∗)

)
for all t ∈ [0, 1]. Thus,

2

∫∫
Kdµ∗d(σ − µ∗) + t

∫∫
Kd2(σ − µ∗) ≥ 0,
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for all t ∈ [0, 1], which for t = 0 is equivalent to the stated inequality.

(⇐) Assume that µ∗ is a decent measure that satisfies the stated properties, and

let µ̃ be an extremal measure (assumed to exist by hypothesis). Then, using the

lemma again,

IK [µ̃] = IK [µ∗ + (µ̃− µ∗)]

= IK [µ∗] + 2

∫∫
Kdµ∗d(µ̃− µ∗) +

∫∫
Kd2(µ̃− µ∗),(5.1.11)

and since IK [µ∗] ≥ IK [µ̃], we obtain

(5.1.12) 0 ≥ 2

∫∫
Kdµ∗d(µ̃− µ∗) +

∫∫
Kd2(µ̃− µ∗).

However, the hypothesis on µ∗ applied with σ = µ̃ implies that

(5.1.13)
∫∫

Kdµ∗d(µ̃− µ∗) ≥ 0,

and so we must have
∫∫

Kd2(µ̃ − µ∗) ≤ 0 by (5.1.12), which by positive semi-

definiteness of the kernel implies that∫∫
Kd2(µ̃− µ∗) = 0.

Using this equality back in (5.1.12) together with (5.1.13) then implies that∫∫
Kdµ∗d(µ̃− µ∗) = 0,

which by (5.1.11) then gives IK [µ∗] = IK [µ̃], so that µ∗ is extremal.

5.1.14 Positive definiteness implies the extremal measure is unique. The

following lemma, adapted from [26], shows that positive definiteness is sufficient to

guarantee the uniqueness of the extremal measure, if it exists. We remark that

uniqueness of the extremal measure is not expected for general semi-definite kernels,

and that the characterization of the extremal measure in theorem 5.1.10 does not

require the uniqueness of the extremal measure.
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5.1.15 Lemma. If K is a positive definite symmetric kernel that is bounded from

below for which extremal measures exist and are always decent (so in particular inf IK

is finite), then the extremal measure is unique.

Proof. Assume that µ1 and µ2 are any two extremal measures. Then we can write

IK

[
1

2
µ1 +

1

2
µ2

]
+

∫∫
Kd2

(
1

2
µ1 −

1

2
µ2

)
=

1

2
IK [µ1] +

1

2
IK [µ2] = inf IK ,

where all integrals exist and and finite because of lemma 5.1.7 since µ1 and µ2 are

decent by hypothesis. The second term on the left is positive by positive semi-

definiteness, but we also have IK [(µ1 + µ2)/2] ≥ inf IK . Therefore, we must have∫∫
Kd2 (µ1 − µ2) = 0, and since K is positive definite, it then follows that µ1 =

µ2.

5.2 Variational inequalities for the kernels KV,H

We now apply the contents of the previous section to symmetric kernels of the form

we discussed in the previous chapter, i.e., of the form

(5.2.1) KV,H(x, y) = LH(x, y) +
1

2
V (x) +

1

2
V (y),

where

LH(x, y) := log
H(x, y)

|x− y| .

Most of the arguments are adapted from the case H ≡ 1 as presented in [7].

5.2.2 Assumptions. We will assume that KV,H satisfies the following assumptions:

The kernel KV,H is of the form 5.2.1 and

• H and V are continuous, H ≥ 1, and V (x) − log(x2 − 1) → ∞ as |x| → ∞
(these are the regularity conditions 4.2).

• KV,H is symmetric (which amounts to H being symmetric).
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• KV,H is positive semi-definite.

We recall that we proved that under the regularity assumptions on V and H, the

kernel KV,H is bounded from below, inf IV,H = infσ∈M1(R) IKV,H [σ] is well defined and

finite, extremal measures attaining the infimum exist, and any extremal measure is

decent (in fact, we proved that the infimum defining inf IV,H can be taken over decent

measures).

This implies in particular that all the statements from the previous section are

applicable for these kernels.

5.2.3 Positive semi-definiteness only depends on LH. We also recall that the

growth condition on V and the lower bound on H are what guarantee that KV,H is

bounded from below, so that the integral IKV,H [σ] =
∫∫

KV,H d
2σ exists as an element

of (−∞,∞] for any positive probability measure σ. The function LH , however, does

not have to be bounded from below (the prototypical example L(x, y) = log 1/|x− y|
is certainly not), but our hypothesis on H guarantee that LH is bounded from below

on compact sets.

In particular, for any mean zero compactly supported measure ν we have∫∫
KV,H d

2ν =

∫∫
LH d

2ν,

since
∫∫

V d2ν = 0, where the integral on the right is well defined since LH is bounded

from below on the compact support of ν ⊗ ν. This proves that the positive (semi-

) definiteness of kernels of the form (5.2.1) with H and V satisfying the regularity

conditions only depends on LH .

5.2.4 Remark on bound of H. We remark that we can replace the condition

H ≥ 1 by H ≥ cH > 0 for some constant cH in assumptions 5.2.2 and all statements

in this section will also hold.
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5.2.5 Proposition. IfKV,H satisfies assumptions 5.2.2, a decent measure µ ∈M1(R)

is extremal if and only if there exists a constant ` such that

QV,H(x) := 2

∫
log

H(x, y)

|x− y| dµ(y) + V (x) = `, µ-almost everywhere,

and the inequality ∫
QV,H(x)dσ(x) ≥ `

holds for all decent measures σ.

Proof. The proof of the proposition follows from theorem 5.1.10 and the following

two lemmas.

5.2.6 Lemma. If KH,V satisfies assumptions 5.2.2, and µ and σ are decent, then∫∫
KV,H dµdσ =

∫∫
LH dµdσ +

1

2

∫
V dµ+

1

2

∫
V dσ

where all integrals exist and are finite.

Proof. The integral
∫∫

LH dµdσ is well defined as an element of (−∞,∞] because

LH is bounded from below on the compact support of µ ⊗ σ (see 5.2.3), and the

integral
∫∫

KV,H dµdσ exists and is finite by lemma 5.1.7. The last two integrals on

the right are finite since V is continuous and the measures have compact support.

5.2.7 Lemma. If KV,H satisfies assumptions 5.2.2 and µ is a decent measure, then∫∫
KV,H dµdσ ≥

∫∫
KV,H d

2µ for all decent measures σ if and only if there exists a

constant ` such that

QV,H(x) := 2

∫
log

H(x, y)

|x− y| dµ(y) + V (x) = `

µ-almost everywhere, and the inequality∫
QV,H(x)dσ(x) ≥ `

holds for all decent measures σ.
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Proof. (⇐) Regrouping the equality in lemma 5.2.6 we obtain∫∫
2KV,H dµdσ =

∫ [∫
2LH(x, y)dµ(y) + V (x)

]
dσ(x) +

∫
V (y)dµ(y)

≥ `+

∫
V (y)dµ(y)

=

∫ [∫
2LH(x, y)dµ(y) + V (x)

]
dµ(x) +

∫
V (y)dµ(y)

=

∫∫
2KV,H d

2µ

where the second inequality follows by hypothesis, and the third equality follows since

the integrand is equal to ` µ-a.e., again by hypothesis.

(⇒) Using the equality in lemma 5.2.6 on both sides of
∫∫

2KV,H dµdσ ≥
∫∫

2KV,H d
2µ

and canceling
∫
V dµ in both sides we obtain∫∫

2LH(x, y)dµ(y)dσ(x) +

∫
V dσ(x) ≥

∫∫
2LHd

2µ+

∫
V dµ,

or

(5.2.8)
∫
QV,H(x)dσ(x) =

∫ [
2

∫
log

H(x, y)

|x− y| dµ(y) + V (x)

]
dσ(x) ≥ `

where

` :=

∫∫
2LHd

2µ+

∫
V dµ.

Let now B := {x : QV,H(x) < `} and assume that µ(B) > 0. Define

σ =
1

µ(B)
µ |B

and note that σ is decent since µ is. Then we have
∫
QV,H(x)dσ(x) < ` which

contradicts the inequality (5.2.8) which we know holds for all decent σ. Thus, we

must have µ(B) = 0. Using (5.2.8) with σ = µ then shows that QV,H(x) = `,

µ-almost everywhere.

5.2.9 Remark about the constant `. We note that if µ is extremal, then the

constant ` in the statement of the proposition is given by

` = 2 inf IV,H −
∫
V dµ,
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as follows from the proof of the second lemma. In particular, the constant depends on

µ, and there is no reason to expect the constants for two different extremal measures

to be equal.

We finally arrive at a characterization of extremal measures which are absolutely

continuous with respect to Lebesgue measure where there is no mention of an auxiliary

measure σ.

5.2.10 Theorem. If KV,H satisfies assumptions 5.2.2, a decent measure µ ∈M1(R)

with dµ(x) = ρ(x)dx, and ρ continuous is extremal if and only if there exists a constant

` such that

QV,H(x) = 2

∫
log

H(x, y)

|x− y| dµ(y) + V (x) ≥ `, ∀x ∈ R

= `, on {x : ρ(x) > 0}

Proof. (⇐) This is automatic by proposition 5.2.5.

(⇒) We first note that if dµ(x) = ρ(x)dx for some continuous ρ with compact

support, then QV,H(x) is continuous in x (one only needs the continuity of∫
log

1

|x− y|ρ(y)dy

since H and V are continuous and H ≥ 1, and this is proven in corollary 13.1 in [24]).

Now, by proposition 5.2.5 we know that QV,H(x) = `, µ-almost everywhere. As-

sume by contradiction that there exists an a ∈ {x : ρ(x) > 0} for which QV,H(a) 6= `.

Then since QV,H is continuous, we know that there is a δ for which QV,H(x) 6= ` for

all x ∈ (a− δ, a+ δ). Moreover, since ρ is continuous, we know that {x : ρ(x) > 0} is
open, so we can also choose δ so that (a − δ, a + δ) ⊂ {x : ρ(x) > 0}. But then the

interval (a− δ, a+ δ) is a set where f(x) 6= ` and for which µ[(a− δ, a+ δ)] 6= 0 which

gives a contradiction. Thus, QV,H ≡ ` on the set {x : ρ(x) > 0}.
For the inequality QV,H ≥ `, note that by proposition 5.2.5 we know that∫

QV,H(x)dσ(x) ≥ `
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for any decent σ. However, if there was an a for which QV,H(a) < `, then again, by

the continuity of QV,H , we would be able to find a δ for which QV,H(x) < ` for all

x ∈ (a− δ, a+ δ), and then, if we define

σ =
1

2δ
χ(a−δ,a+δ)dx

where χ(a−δ,a+δ) is the characteristic function of the interval (a−δ, a+δ), then σ will be

decent since Q is continuous and so IV,H [σ] = (1/2)
∫

(QV,H + V ) dσ <∞. However,

we would then have
∫
QV,H(x)dσ(x) < ` which contradicts the above inequality since

σ is decent.

5.2.11 The saddle-point equation. We remark that if V , H and ρ are sufficiently

well behaved, then the function

QV,H(x) = 2

∫
log

H(x, y)

|x− y| dµ(y) + V (x),

showing up in theorem 5.2.10 will be differentiable, and moreover, the equality on the

support of ρ from theorem 5.2.10 will be equivalent to

0 = Q′V,H(x) = V ′(x) + 2

∫
∂xH(x, y)

H(x, y)
ρ(y)dy − 2 p.v.

∫
ρ(y)

x− ydy, x ∈ supp ρ.

The benefit of this equation is that there no longer is any mention of the unknown

constant ` for the equality on the support, which in principle could be hard to find.

This last equation is what physicists would call the saddle-point equation for ρ

(see 3.1.8). It is know that the inequality off the support does not follow from the

equality, so if ρ satisfies the saddle-point equation, it is not necessarily an equilibrium

measure.

For example, for the case H ≡ 1, V (x) = x2/2 where one knows that the there is

a unique extremal measure with density ρ(x) = (2π)−1
√

4− x2 (see [7] for example)

supported on the interval [−2, 2] , one may take instead for a > 0 the density

ρa(x) =

√
a2 − x2

2π
+

4− a2

4π
√
a2 − x2

,
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supported on the interval [−a, a], which agrees with ρ when a = 2. Note that ρa ≥ 0

and
∫ a
−a ρa(x)dx = 1, so that ρa is in fact a probability density. One can verify

that ρa satisfies the saddle point equation on its support [−a, a], but as we know by

uniqueness, the only one that will satisfy the variational inequalities off the support

will be ρ2 = ρ. This example comes from the following considerations: The saddle-

point equation in this situation takes the form

2 p.v.

∫
ψ(y)

x− ydy = x, x ∈ supp ψ,

which one can write as

g(x+ i0) + g(x− i0) = x, x ∈ supp ψ,

where g(z) :=
∫
R
ψ(y)
z−y dy. General considerations (transforming it into a Riemann

Hilbert problem) show that this is solved by

g(z) =
1

2

(
z −
√
z2 − a2

)
for some a, and one can recover the density through the formula g(x+i0)−g(x−i0) =

−2iπρ(x). Now, one can tweak g(z) by adding another term

g̃(z) =
1

2

(
z −
√
z2 − a2

)
+

c√
z2 − a2

for some constant c, since this does not break the property

g̃(x+ i0) + g̃(x− i0) = x, x ∈ (−a, a).

The corresponding ψ is again given by g̃(x+ i0)− g̃(x− i0) which gives the ρa above,

after one choses c so that it has mass 1.

5.2.12. If one further knows that the density is supported on a union of finite intervals

[a1, b1], . . . , [an, bn] where bi < ai+1, then the the conditions in the theorem can be
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replaced by

Q′V,H(x) = 0 for x ∈
⋃

(ai, bi)∫ a1

x

Q′V,H(x)dx ≤ 0 for x < a1∫ x

bi

Q′V,H(x)dx ≥ 0 for bi < x < ai+1∫ x

bn

Q′V,H(x)dx ≥ 0 for x > bn∫ ai+1

bi

Q′V,H(x)dx = 0 for i = 1 . . . , n− 1,

where one manages to remove all mention of the unknown constant ` from the state-

ment of the theorem. We stress again that this all relies on V , H and ρ being well

behaved, and we will not make this more precise at the moment. We will work out

all the details for the case of colored triangulations in chapter 6.

5.3 Positive definiteness of KV,H with H(x, y) =
√

1 + t2(x+ y)2

We now further specialize to analyze kernels KV,t of the form

(5.3.1) KV,t(x, y) := log

√
1 + t2(x+ y)2

|x− y| +
1

2
V (x) +

1

2
V (y)

where t ∈ R, V is continuous, and V (x) − log(x2 + 1) → ∞ as |x| → ∞ (so that

H(x, y) =
√

1 + t2(x+ y)2 and V satisfy the regularity conditions 4.2). We will

prove that these kernels are always positive definite, and so in particular they satisfy

assumptions 5.2.2 which will make the criteria characterizing equilibrium measures

described in the previous section applicable.

As discussed in 5.2.3, the positive (semi-)definiteness of the kernel KV,t only de-

pends on the logarithmic piece

Lt(x, y) := log

√
1 + t2(x+ y)2

|x− y| ,
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and so we only need to prove that for any signed measure ν with mean zero and

compact support one has

(5.3.2)
∫∫

Lt
(
dν+dν+ + dν−dν−

)
≥ 2

∫∫
Ltdν

+dν−,

where ν = ν+− ν− is the decomposition of the measure into its positive and negative

parts.

Regarding the part of Lt involving log 1/|x− y|, Deift [7, p. 143] proves that

(5.3.3)
∫∫

log
1

|x− y|
(
d2ν+ + d2ν−

)
= 2

∫∫
log

1

|x− y|dν
+dν− +

1

2

∫ |Fν|2
|k| dk,

where

Fν(k) :=

∫
eixkdν(x)

is the Fourier transform of the measure. This in particular implies that the kernel

log 1/|x − y| is positive definite since the equality of the double integrals in (5.3.3)

when they are finite (see the definition of positive definiteness) holds only if Fν = 0,

or equivalently only if ν = 0.

We will find a similar identity for log
√

1 + t2(x+ y)2 which we will combine with

(5.3.3) to prove positive definiteness of Lt. Before going into the details, we describe

a heuristic argument explaining where identity (5.3.3) and the analogous one for

log
√

1 + t2(x+ y)2 come from.

5.3.4 Heuristics. The basic strategy is to write integrals of the form∫∫
g(x± y)dν(x)dν(y)

in terms of the Fourier transforms of g and ν. We will ignore all issues involving

whether the integrals are defined or not, and whether hypothesis needed to apply

theorems hold or not.

If we write ∫∫
g(x− y)dν(x)dν(y) =

∫
(g ∗ ν) dν(x),
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and then use Plancherel’s theorem (which with this convention for the Fourier trans-

form takes the form
∫
fh = (2π)−1

∫
FfFh), we obtain∫∫

g(x− y)dν(x)dν(y) =
1

2π

∫
F (g ∗ ν)Fν dk =

1

2π

∫
Fg |Fν|2 dk.

This last equation applied to g(x) = log 1/|x| gives Deift’s formula (5.3.3) above,

since

F
(

log
1

|x|

)
=

π

|k| + 2πγδ(k),

where γ is the Euler constant and δ(k) is a point mass at the origin (recall that∫
dν = 0).

For integrals involving the sum x+y instead of x−y (such as log
√

1 + t2(x+ y)2),

with the extra assumption that g is even and real valued we can write∫∫
g(x+ y)dν(x)dν(y) =

∫ (∫
g(x− y)dν(y)

)
dν̃(x),

where ν̃(A) = ν(−A), and equality holds because g is even. Then, the same arguments

as above give∫∫
g(x+ y)dν(x)dν(y) =

1

2π

∫
FgFν F ν̃dk =

1

2π
Re
∫
Fg (Fν)2 dk,

where the second equality follows because F ν̃ = Fν and the fact that we know that

the integral on the left hand side is real.

For example, for g(x) = log
√

1 + t2x2 one expects to have

(5.3.5)
∫∫

log
√

1 + t2(x+ y)2dν(x)dν(y) = −1

2
Re
∫
e−|k|/t

|k| (Fν)2 dk,

since

F
(

log
√

1 + t2x2
)

= −πe
−|k|/t

|k| .

We will prove identity (5.3.5) in the proof of the following proposition. This concludes

the heuristics.

5.3.6 Proposition. The kernels KV,t from (5.3.1) with t ∈ R are positive definite.
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Proof. The case when t = 0 is proved in [7] and was outlined above, so from now on

we assume that t > 0. We will use the following identity [7, p. 144]: For any ε > 0

one has

log
(
s2 + ε2

)
= log ε2 − 2Re

∫ ∞
0

e−εk
eisk − 1

k
dk.

Writing log
√

1 + t2(x+ y)2 = log t+ 2−1 log (t−2 + (x+ y)2) and using this iden-

tity with ε = 1/t and s = x+ y we obtain

log
√

1 + t2(x+ y)2 = −Re
∫ ∞

0

e−k/t
ei(x+y)k − 1

k
dk.

Thus, for any compactly supported mean zero measure ν we have∫∫
log
√

1 + t2(x+ y)2 d2ν = −Re
∫ ∞

0

e−k/t

k

∫∫ [
ei(x+y)k − 1

]
d2νdk

= −Re
∫ ∞

0

e−k/t

k
(Fν)2 dk

= −1

2
Re
∫
e−|k|/t

|k| (Fν)2 dk

where the second equality follows because
∫
dν = 0, and the third because Fν(−k) =

Fν(k) since ν is real. This is precisely the identity (5.3.5) we gave in the heuristics

above. Note that all the integrals are finite because ν has compact support and Fν(k)

is analytic and vanishes at k = 0.

Combining (5.3.3) and (5.3.5), where only (5.3.3) can involve infinite quantities

gives

(5.3.7)
∫∫

Lt
(
d2ν+ + d2ν−

)
= 2

∫∫
Ltdν

+dν− +

∫ |Fν|2 − e−|k|/tRe [(Fν)2]
2|k| dk,

and so, to prove the positive semi-definiteness of Lt we only need to prove the integral

on the right is non-negative. However, this follows from the fact that the integrand

itself on the integral on the right is non-negative, which one can see by writing

(5.3.8) |Fν|2 − e−|k|/tRe
[
(Fν)2] = u(k)2(1− e−|k|/t) + v(k)2(1 + e−|k|/t) ≥ 0
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where

Fν(k) = u(k) + iv(k),

is the expression of the Fourier transform of ν in terms of its real and imaginary parts.

For positive definiteness, note that if
∫∫

L (d2ν+ + d2ν−) and 2
∫∫

Ldν+dν− are finite

and equal (see definition of positive definiteness), then by (5.3.7) we must have∫ |Fν|2 − e−|k|/tRe [(Fν)2]
2|k| dk = 0

which by (5.3.8) is equivalent to u ≡ v ≡ 0.

5.3.9 Corollary. There is a unique extremal measure for the kernel KV,t for each

t ∈ R. A compactly supported measure with continuous density ρVt is the extremal

measure if and only if there exists a constant ` = `(t) such that

QV,t(x) := 2

∫
log

√
1 + t2(x+ y)2

|x− y| ρVt (y)dy + V (x) ≥ `, ∀x ∈ R

= `, on supp ρVt .

5.4 Some results regarding the support of the extremal den-
sity for the case H(x, y) =

√
1 + t2(x+ y)2

In this section we show that one can also generalize arguments from [8] regarding the

case H ≡ 1, to prove that the support of the extremal measure of the kernel

(5.4.1) KV,t(x, y) = log

√
1 + t2(x+ y)2

|x− y| +
1

2
V (x) +

1

2
V (y),

is a union of finitely many intervals, under the assumptions that V is polynomial of

even degree with positive leading coefficient, and that the extremal measure has a

continuous density ρVt that satisfies two technical assumptions (which are expected

to hold). More explicitly, we will prove the following proposition.

5.4.2 Proposition. If V is a polynomial of even degree with positive leading term,

t ∈ R, and if the (unique) extremal measure µV,t for the kernel KV,t (5.4.1) has a
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Hölder continuous density ρVt for which
∫

(log |x− y|) ρVt (y)dy is differentiable in x,

then µV,t is supported on finitely many intervals, and the density ρVt is in fact analytic

in the interior of its support.

We remark that it is expected that in this situation the extremal measure does have

have a density ρVt which is Hölder continuous and for which
∫

(log |x− y|) ρVt (y)dy is

differentiable in x (see [8]), but we do not have a proof of this fact at the moment.

We provide the proof of proposition 5.4.2 in paragraph 5.4.15, after we develop the

necessary ingredients for its proof.

We also remark that under the assumptions on the extremal measure from proposi-

tion 5.4.2, the above result will apply to the leading order asymptotics of the partition

function

Z̃N(t; t1, . . . , t2n) :=∫∫∫
exp

{
N Tr

[
it (ABC + ACB)−

2n∑
j=1

tjA
j

]}
dµN(A)dµN(B)dµN(C),

since one can check that the computations that reduce ẐN(t) (1.3.1) to an N dimen-

sional integral over the eigenvalues of matrix A (which we review in section 6.1), also

show that the asymptotics of Z̃N(t; t1, . . . , t2n) are related to the functional IH,V with

H(x, y) =
√

1 + t2(x+ y)2 and

Vt1,...,t2n(x) =
1

2
x2 + t1x+ t2x

2 + . . . t2nx
2n.

By the contents of chapter 2, this partition function is related to combinatorial

counts of maps with tri-valent vertices with the three colors (of types q1 and q2),

together with vertices of color A of various valences.

To fix notation in this section, we define

(5.4.3) Ht(x, y) :=
√

1 + t2(x+ y)2.
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5.4.4 A formula from the saddle-point equation. We first remark that if the

density ρVt is continuous, and
∫

(log |x− y|) ρVt (y)dy is differentiable in x, then the

saddle-point equation (see 5.2.11), which corresponds to the equality on the support

of ρVt in corollary 5.3.9, takes the form

(5.4.5) 0 = V ′(x) + 2

∫
∂xHt(x, y)

H(x, y)
ρVt (y)dy − 2 p.v.

∫
ρVt (y)

x− y dy, x ∈ supp ρVt .

Now, defining

WV,t(z) :=

∫
ρVt (y)

z − y dy, z /∈ supp ρVt ,

then, under the assumption that ρVt (y) is Hölder continuous, the Sokhotski-Plemelj

formulas

WV,t(x± i0) = p.v.

∫
R

ρVt (y)

x− y dy ∓ iπρ
V
t (x), x ∈ supp ρVt ,

combined with equation (5.4.5) show that

WV,t(x± i0) =
1

2
V ′(x) +

∫
∂xHt(x, y)

Ht(x, y)
ρVt (y)dy ∓ iπρVt (x), x ∈ supp ρVt .

Define

(5.4.6) RV,t(z) := WV,t(z)−
(

1

2
V ′(z) +

∫
∂1Ht(z, y)

Ht(z, y)
ρVt (y)dy

)
,

(where the ∂1Ht(z, y) term means ∂x(Ht(x, y)) |x=z) for z outside supp ρVt and outside

the set of points where ∂1Ht(z, y)/Ht(z, y) vanishes when y ∈ supp ρVt . This corre-

sponds (under the assumption that t is real) to assuming that z does not lie on the

support supp ρVt or on the translates of the support of ρVt given by ±i/t − supp ρVt ,

since

(5.4.7)
∂1Ht(x, y)

Ht(x, y)
=

t2(x+ y)

1 + t2(x+ y)2
.

The above equations show that

RV,t(x± i0) = ∓iπρVt (x), x ∈ supp ρVt(5.4.8)

∈ R, x /∈ supp ρVt .
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We now show that one can express (RV,t(z))2 as a function that is analytic for z ∈ R.

We will present the arguments for general V and H.

5.4.9 The loop equations. We provide a precise derivation in the present situation

of what are known in the physics literature as the loop equations. We will have to

make assumptions on V and H for the arguments to hold, which we will make precise

along the way.

Following ideas presented in [19, p. 161] for the case H ≡ 1, we make the substi-

tution xi = yi + αφ(yi) in the integral

ZV,H
N =

∫
RN
e−N

∑
V (xi)

∏
i<j

(xi − xj)2
∏

1≤i,j≤N

1

H(xi, xj)
dNx,

where φ has continuous derivative with φ′ bounded form below. This substitution is

a diffeomorhism as long as αφ′(y) 6= −1 for all y, which can be guaranteed if α ≥ 0

is small enough. If one then differentiates with respect to α, and sets α = 0, one

obtains, after much manipulation, the identity

0 = N

∫
R
φ′(s)uV,HN (s)ds−N2

∫
R
V ′(s)φ(s)uV,HN (s)ds

+N(N − 1)

∫∫
R2

φ(s)− φ(r)

s− r uV,HN (s, r)dsdr(5.4.10)

−N2

∫∫
R2

φ(s)∂1H(s, r) + φ(r)∂2H(s, r)

H(s, r)
uV,HN (s, r)dsdr,

where uV,HN (x1) and uV,HN (x1, x2) are as in theorem 4.3.5, and ∂iH denotes partial

derivative of H with respect to its i-th variable. The idea to differentiate with respect

to a parameter after a change of variables is common in quantum field theory, and

the equations that one obtains are referred to as loop equations.

Now, under the assumption that H is symmetric and differentiable (such as H =

Ht as in (5.4.3)), we have

∂2H(s, r) = ∂r(H(s, r)) = ∂r(H(r, s)) = ∂1H(r, s),
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and then using the fact that uV,HN (s, r) is symmetric too (independent of the symmetry

of H), we have∫∫
R2

φ(r)
∂2H(s, r)

H(s, r)
uV,HN (s, r)dsdr =

∫∫
R2

φ(r)
∂1H(r, s)

H(r, s)
uV,HN (r, s)dsdr,

=

∫∫
R2

φ(s)
∂1H(s, r)

H(s, r)
uV,HN (s, r)dsdr,

where in the last equality we changed the roles of r and s in the integral. Using this

in the last integral in (5.4.10) then gives the identity

0 = N

∫
φ′(s)uV,HN (s)ds−N2

∫
V ′(s)φ(s)uV,HN (s)ds

+N(N − 1)

∫∫
φ(s)− φ(r)

s− r uV,HN (s, r)dsdr

− 2N2

∫∫
φ(s)

∂1H(s, r)

H(s, r)
uV,HN (s, r)dsdr.

Dividing by N2, assuming that the extremal measure µV,H is unique, taking the

limit N → ∞, and assuming that theorem 4.3.5 is applicable for each term in the

above equation, we obtain

0 = −
∫
V ′(s)φ(s)dµV,H(s) +

∫∫
φ(s)− φ(r)

s− r dµV,H(s)dµV,H(r)

− 2

∫∫
∂1H(s, r)

H(s, r)
φ(s)dµV,H(s)dµV,H(r).(5.4.11)

Since all of the expressions in the above discussion from (5.4.10) to (5.4.11) are

linear in φ, it can be separately applied to the real and imaginary parts of

φ(y) :=
1

z − y ,

where z /∈ R, and then combined together. This gives

0 = −
∫
V ′(s)

z − sdµV,H(s) +

∫∫
1

(z − s)(z − r)dµV,H(s)dµV,H(r)

− 2

∫∫
∂1H(s, r)

H(s, r)

1

z − sdµV,H(s)dµV,H(r),
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which one can rewrite in terms of

(5.4.12) WV,H(z) :=

∫
1

z − sdµV,H(s), z /∈ suppµV,H ,

as

0 =

∫
V ′(z)− V ′(s)

z − s dµV,H(s)ds− V ′(z)WV,H(z) + (WV,H(z))2

+ 2

∫∫ (
∂1H(z, r)

H(z, r)
− ∂1H(s, r)

H(s, r)

)
1

z − sdµV,H(s)dµV,H(r)

−2 WV,H(z)

∫
∂1H(z, r)

H(z, r)
dµV,H(r).

Completing the square for WV,H(z) then gives

(RV,H(z))2 =

(
1

2
V ′(z) +

∫
∂1H(z, r)

H(z, r)
dµV,H(r)

)2

−
∫
V ′(z)− V ′(s)

z − s dµV,H(s)ds(5.4.13)

−2

∫∫ (
∂1H(z, r)

H(z, r)
− ∂1H(s, r)

H(s, r)

)
1

z − sdµV,H(s)dµV,H(r),

where

(5.4.14) RV,H(z) := WV,t(z)−
(

1

2
V ′(z) +

∫
∂1H(z, r)

H(z, r)
dµV,H(r)

)
.

We remark that the deduction of (5.4.13) depended on the fact that the extremal

measure of KV,H is unique, that H is symmetric and differentiable with continuous

partial derivatives, and that all the applications of theorem 4.3.5 were valid.

5.4.15 Proof of proposition 5.4.2. If we now go back to the case with Ht(x, y) =√
1 + t2(x+ y)2, then all of the arguments in 5.4.9 are applicable since ∂1Ht is con-

tinuous and bounded on R2, and for the limit of
∫
V ′(s)φ(s)uV,HN (s)ds we can write∫

V ′(s)φ(s)uV,HN (s)ds = −
∫
V ′(z)− V ′(s)

z − s uV,HN (s)ds+ V ′(z)

∫
1

z − su
V,H
N (s)ds

and use the fact that the first integrand on the left is a polynomial if V is a polynomial

(see 4.8.6).
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Thus, we find that (see (5.4.6), (5.4.13) and (5.4.14))

(RV,t(z))2 =

(
1

2
V ′(z) +

∫
t2(z + r)

1 + t2(z + r)2
ρVt (r)dr

)2

−
∫
V ′(z)− V ′(s)

z − s ρVt (s)ds

− 2

∫∫
t2(1 + t2(z + r)(s+ r))

(1 + t2(z + r)2) (1 + t2(s+ r)2)
ρVt (s)ρVt (r)dsdr,

where we note that the last integrand is not singular at z = s (compare to (5.4.13)).

We denote by FV,t(z) the function of z on the right hand side of this equality.

Of fundamental importance is to note that since V is a polynomial, then FV,t(z)

is analytic and real valued for z ∈ R. Moreover, letting z approach the real axis to

x ∈ R (say from above), and using (5.4.8), we obtain

FV,t(x) = −(2πρVt (x))2, x ∈ supp ρVt

≥ 0, x /∈ supp ρVt ,

which immediately implies the following equality of sets

{x ∈ R | ρVt (x) > 0} = {x ∈ R | FV,t(x) < 0}.

We know that the set on the left is bounded since the support of ρVt is compact,

and since FV,t(z) is analytic on R, it can only change sign a finite number of times on

this bounded set. This implies that supp ρVt consists of finitely many intervals. The

fact that ρVt is analytic in the interior of its support follows from the fact that FV,t is

analytic on R.

5.4.16 General formulas that do not assume the symmetry of H. We remark

that even though the arguments in 5.4.9 were presented under the assumption that

H is symmetric, one can obtain weaker formulas without assuming symmetry of H.

Even though we will not be using these more general equations since the H for colored

triangulations is symmetric, we supply the details for possible future applications.

By using the identity

φ(s)∂1H(s, r) + φ(r)∂2H(s, r)

H(s, r)
= φ(s)

∂1H(z, r)

H(z, r)
+ φ(r)

∂2H(s, z)

H(s, z)
+ T [H,φ, r, s, z],
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where

T [H,φ, r, s, z] := φ(s)

(
∂1H(s, r)

H(s, r)
− ∂1(z, r)

H(z, r)

)
+ φ(r)

(
∂2H(s, r)

H(s, r)
− ∂2(s, z)

H(s, z)

)
,

we can write equation (5.4.10) as

0 =
1

N

∫
φ′(s)uV,HN (s)ds−

∫
(V ′(z)− V ′(s))φ(s)uV,HN (s)ds(5.4.17)

− V ′(z)

∫
φ(s)uV,HN (s)ds+

N(N − 1)

N2

∫∫
φ(s)− φ(r)

s− r uV,HN (s, r)dsdr

−
∫∫

T [H,φ, r, s, z]uV,HN (s, r)dsdr

−
∫∫

φ(s)

(
∂1H(z, r)

H(z, r)
+
∂2H(r, z)

H(r, z)

)
uV,HN (s, r)dsdr,

where in the last integral we have used the fact that uV,HN (s, r) = uV,HN (r, s) to change

the roles of s and r in the second term.

Under the assumption that the hypothesis for theorem 4.3.5 are satisfied for each

term, then (5.4.10) becomes

0 = −
∫
V ′(s)φ(s)µV,H(s) +

∫∫
φ(s)− φ(r)

s− r dµV,H(s)dµV,H(r)

−
∫∫

φ(s)∂sH(s, r) + φ(r)∂rH(s, r)

H(s, r)
dµV,H(s)dµV,H(r)

while (5.4.17) becomes

0 =

∫
V ′(z)− V ′(s)

z − s dµV,H(s)− V ′(z)

∫
1

z − sdµV,H(s)

+

∫∫
1

(z − r)(z − s)dµV,H(s)dµV,H(r)

−
∫∫

T [H,φ, r, s, z]dµV,H(s)dµV,H(r)

−
∫∫

φ(s)

(
∂1H(z, r)

H(z, r)
+
∂2H(r, z)

H(r, z)

)
dµV,H(s)dµV,H(r),
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or, in terms of WV,H(z) (see (5.4.12))

0 =

∫
V ′(z)− V ′(s)

z − s dµV,H(s)− V ′(z)WV,H(z) + (WV,H(z))2

−
∫∫

T [H,φ, r, s, z]dµV,H(s)dµV,H(r)

− WV,H(z)

∫ (
∂1H(z, r)

H(z, r)
+
∂2H(r, z)

H(r, z)

)
dµV,H(r).
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Chapter 6

Asymptotics for the partition function for
colored triangulations

In this chapter we go back to the study of the specific integral

ẐN(t) :=

∫∫∫
exp {N Tr [it(ABC + ACB)]} dµN(A)dµN(B)dµN(C)

related to colored triangulations.

In section 6.1 we provide the details of why

(6.0.1) ẐN(t) =
YN(t)

YN(0)
=: ŶN(t), t ∈ R

where

YN(t) :=

∫
RN
e−N

∑
λ2i /2

∏
i<j

(λi − λj)2
∏
i,j

1√
1 + t2(λi + λj)2

dNλ,

with dNλ = dλ1 . . . dλN . As far as we know, this formula first appeared in [6].

As we discussed in chapter 4, the leading order asymptotics of YN(t) are related

to the minimizer of the functional

It[µ] :=

∫∫ [
log

√
1 + t2(x+ y)2

|x− y| +
1

2
V (x) +

1

2
V (y)

]
dµ(x)dµ(y) =

∫∫
Kt d

2µ,

where

Kt(x, y) := log

√
1 + t2(x+ y)2

|x− y| +
1

2
V (x) +

1

2
V (y),

and

V (x) =
1

2
x2.

In section 5.3 we proved that the kernels Kt are positive definite for any t ∈ R.

This implies that the extremal measure attaining the infimum

inf It := inf
µ∈M1(R)

It[µ],
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is unique for each t ∈ R, and, as stated in corollary 5.3.9, that the criterion to

characterize the density of an extremal measure (if such a density exists) described

by theorem 5.2.10 is applicable.

In this chapter we return to the heuristics from the physics litarature we dis-

cussed in section 3.2, and show that the density proposed by the physicists is, in

fact, the density of the extremal measure of It. The construction of the density ρt is

considerably involved, and will make up a large portion of this chapter. Once ρt is

constructed, we will discuss its analytic dependence on the parameter t, which will

be used to show that limN→∞N−2 log ẐN(t) is analytic in t around t = 0.

6.1 Reduction to an N dimensional integral.

In this section we prove the identity (6.0.1). We start by separating the integral over

the matrix C, write the rescaled GUE measure dµN(C) explicitly in terms of dC as

in (1.1.4), and complete the square to obtain

ẐN(t) =
1

ZGUE
N

∫∫ (
exp

{
−Nt2Tr

[
ABAB + A2B2

]}
×

∫
exp

{
−N

2
Tr
[
(C − it(AB +BA))2]} dC) dµN(B)dµN(A).

Now,
∫

exp{−Tr (C − sM)2}dC =
∫

exp{−TrC2}dC for any Hermitian matrix M

and real s by a simple substitution, and so∫
exp

{
−N

2
Tr
[
(C − it(AB +BA))2]} dC =

∫
exp

{
−N

2
TrC2

}
dC,

because the left hand side is analytic as a function of t ∈ C, and equal to the right

hand side for t ∈ iR, since AB+BA is Hermitian. Given that their common value is

ZGUE
N , this gives

ẐN(t) =

∫∫
exp

{
−Nt2Tr

[
ABAB + A2B2

]}
dµN(B)dµN(A),
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which is a representation of ẐN(t) that is interesting in its own right because it also

has a combinatorial interpretation (4-valent stars with two colorsA,B of types ABAB

or A2B2).

Now, diagonalize the matrix A = UAΛAU
−1
A where ΛA is the diagonal matrix

ΛA := diag(λ1, . . . , λn), and UA is unitary (see for example Chapter 5 in [7]). One

can then move the conjugation of A by UA to conjugation of B by U−1
A , and use the

invariance of dµN(B) under conjugation by unitary matrices to cancel the unitary

part of the integral dUA. This gives

ẐN(t) =

∫∫
exp

{
−Nt2Tr

[
ΛABΛAB + Λ2

AB
2
]}
dµN(B)dµev

N (λ),

where µev
N is the induced probability measure on eigenvalues of A as defined in 1.1.5.

Writing dµN(B) explicitly gives

ẐN(t) =
1

ZGUE
N

∫∫
exp

{
−NTr

[
1

2
B2 + t2(ΛABΛAB + Λ2

AB
2)

]}
dBdµev

N (λ).

The term in the exponential is a (diagonal) quadratic form in the real and imaginary

entries of B, which one can further check is positive definite for all λ ∈ RN only if

t ∈ R. We now perform the integral over the B matrix by using Gaussian integration

as follows: We first rescale the matrix B by setting B̂ =
√
NB. This gives (see

(1.1.1))

ẐN(t) =
1

Z̃GUE
N

∫∫
exp

{
−Tr

[
1

2
B̂2 + t2(ΛAB̂ΛAB̂ + Λ2

AB̂
2)

]}
dB̂dµev

N (λ).

Now note that the term in the exponential is a quadratic form in the variables

showing up in dB̂, which we can write as

−Tr
[

1

2
B̂2 + t2(ΛAB̂ΛAB̂ + Λ2

AB̂
2)

]
= −1

2
Tr
[
B̂2 + 2t2(ΛAB̂ΛAB̂ + Λ2

AB̂
2)
]

= −1

2
bTQ(t, λ)b

where ·T stands for transpose and

bT = (b̂11, . . . , b̂NN ,Re b̂12, . . . , Im b̂12)
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are the N2 variables showing up in dB̂. Then, for values of t for which Q(t, λ) is

positive definite for all λ ∈ RN (we will see below that this is the case if t ∈ R), we

will have have

ẐN(t) =
1

Z̃GUE
N

∫
RN

√
(2π)N2

detQ(t, λ)
dµev

N (λ).

Using (1.1.2) we get

ẐN(t) = 2N(N−1)/2

∫
RN

1√
detQ(t, λ)

dµev
N (λ).

All that remains now is to find detQ(t, λ) and the t for which Q(t, λ) is positive

definite for all λ ∈ RN . By using ΛA = diag(λ1, . . . , λN) and writing the traces TrB̂2,

Tr[ΛAB̂ΛAB̂], and Tr[Λ2
AB̂

2] in terms of the matrix entries separately, using the same

indices on each sum, and the fact that B̂ is hermitian so that b̂ij b̂ji = |b̂ij|2, we obtain

Tr
[
B̂2 + 2t2(ΛAB̂ΛAB̂ + Λ2

AB̂
2)
]

=
N∑

i,j=1

|b̂ij|2(1 + 2t2λiλj + 2t2λ2
i )

=
N∑
i=1

b̂2
ii(1 + 4t2λ2

i ) +
∑
i<j

2|b̂ij|2(1 + 2t2λiλj + t2λ2
i + t2λ2

j)

=
N∑
i=1

b̂2
ii(1 + 4t2λ2

i ) +
∑
i<j

((
Re b̂ij

)2

+
(
Im b̂ij

)2
)

2
(
1 + t2 (λi + λj)

2)
so that Q(t, λ) is diagonal, and

detQ(t, λ) = 2N(N−1)

N∏
i,j=1

(
1 + t2(λi + λj)

2
)
.

Note that Q(t, λ) is positive definite for all λ ∈ RN only if t ∈ R.

Going back to ẐN(t), we see that the constant 2N(N−1) will cancel, giving

ẐN(t) =

∫
RN

N∏
i,j=1

1√
1 + t2(λi + λj)2

dµev
N (λ)

=
1

ZevGUE
N

∫
RN
e−

N
2

∑
λ2i
∏
i<j

(λi − λj)2

N∏
i,j=1

1√
1 + t2(λi + λj)2

dNλ

=
YN(t)

YN(0)
= ŶN(t)

for t ∈ R, by the definition of µev
N (see 1.1.5), and the fact that ZevGUE

N = YN(0).
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6.2 Overview of the strategy

We now recall the construction of a candidate density ρt for the minimizer of It in the

physics literature that we discussed in section 3.2. We remark that the papers [18]

and [20] contain a construction of a density ρt that satisfies the equality Qt(x) = `t

on the support of ρt, but do not verify the inequality off the support, and do not have

the result from corollary 5.3.9 (which states that these two conditions are sufficient

to know that ρt is, in fact, the minimizer of It). As discussed in 5.2.11, there may be

densities that satisfy the equality on the support without being extremal.

6.2.1 Heuristics. If in the expression for YN(t) one rescales the eigenvalues by t to

move the t dependence to the potential V (x) = x2/2, one then takes a t derivative,

and then rescales the eigenvalues back, one obtains the identity

(6.2.2)
d

dt

[
1

N2
log ŶN(t)

]
= −1

t
+

1

t

∫ (
1

N

∑
x2
i

)
ρN,t(x1, . . . , xN)dx1 . . . dxN ,

where ρN,t(x1, . . . , xN) is the probability density given by

ρN,t(x1, . . . , xN) :=
1

YN(t)

∏
1≤i,j≤N

1√
1 + t2(xi + xj)2

∏
i<j

(xi − xj)2e−N
∑N
i=1 x

2
i /2.

Letting N → ∞ and using theorem 4.3.5 with the unbounded φ(x) = x2, one

expects the integral in the right hand side of (6.2.2) to converge to
∫
R x

2ρt(x)dx, if

ρt is, in fact, the unique minimizer of It. Assuming that the limit N →∞ and d/dt

commute on the left side of (6.2.2), one expects that in the limit, identity (6.2.2) will

take the from

(6.2.3)
d

dt
[−It[ρt]] = −1

t
+

1

t

∫
R
x2ρt(x)dx.

This shows, heuristically, that to obtain the genus zero generating function e0 one

just needs to find a Taylor expansion for the second moment of the density ρt around

t = 0. This second moment is what is found in [20] using a construction we review in

the following section when carefully defining ρt.
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6.2.4. We remark that the application of theorem 4.3.5 with the unbounded φ(x) = x2

can be justified by using the large deviation estimates, and using that in this situation

V (x) grows like a polynomial (as we discussed in 4.8.6). We also remark that the

existence of logZN(t) for complex t close to t = 0 is a delicate matter that we will

not analyze here.

6.2.5. We will give a direct proof for (6.2.3) in section 6.7, after we construct ρt and

prove that it is analytic in t.

6.2.6 The saddle-point equation for ρt and definition of ζt. We recall that,

under the assumption that the minimizer of It is absolutely continuous with con-

tinuous density ρt, the saddle-point equation for ρt as described in 5.2.11 takes the

form

(6.2.7)

x = p.v.

∫
2ρt(y)

x− y dy −
∫ (

t

t(x+ y) + i
+

t

t(x+ y)− i

)
ρt(y)dy, x ∈ supp ρt.

Assuming that ρt is even and supported on a single interval [−βt, βt], one can

write (6.2.7) in terms of the Cauchy transform

(6.2.8) Wt(z) :=

∫
R

ρt(y)

z − ydy, z ∈ C \ [−βt, βt],

by using the Sokhotski–Plemelj formulas

(6.2.9) Wt(x± i0) = p.v.

∫
R

ρt(y)

x− ydy ∓ iπρt(x), x ∈ [−βt, βt]

under the assumption that the boundary values of Wt are finite. Using these as-

sumptions, and the fact that Wt is odd if ρt is even, equation (6.2.7) takes the form

(assuming t 6= 0)

x = Wt(x+ i0) +Wt(x− i0)−Wt

(
x− i

t

)
−Wt

(
x+

i

t

)
, x ∈ [−βt, βt].

If one further defines

(6.2.10) ζt(z) := z2 +
2i

t

(
Wt

(
z +

i

2t

)
−Wt

(
z − i

2t

))
,
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then the saddle-point equation (6.2.7) translates into the following functional equation

for ζt

(6.2.11) ζt

(
x+

i

2t
± i0

)
= ζt

(
x− i

2t
∓ i0

)
, x ∈ [−βt, βt].

The fact that Wt(z) is analytic in C \ [−βt, βt] with expansion at z =∞ given by

Wt(z) =
1

z
+
m1(t)

z2
+
m2(t)

z3
+ . . . ,

where

mi(t) :=

∫
xiρt(x)dx,

translates into the fact that ζt is analytic outside the two cuts ±i/2t+ [−βt, βt], and
has an expansion at infinity of the form

ζt(z) = z2 +

(
2

t2

)
1

z2
+

(
12t2m2(t)− 1

2t4

)
1

z4
(6.2.12)

+

(
1− 40t2m2(t) + 80t4m4(t)

8t6

)
1

z6
+ . . . .

Finally, under the assumption that t is real, one can check that the function ζt

must satisfy the symmetries

ζt(−z) = ζt(z) = ζt(z), t ∈ R \ {0}.

One expects to be able to recover ρt from ζt by using the Plemelj formulas (6.2.9)

once more, which give

ρt(x) = − t

4π

[
ζt

(
x+

i

2t
+ i0

)
− ζt

(
x+

i

2t
− i0

)]
.

In this way, the problem of finding ρt is recast into the problem of finding ζt.

6.3 The associated Riemann-Hilbert problem

The conditions satisfied by ζt that have no explicit mention of ρt make up the following

problem that ζt solves. We call the function ft in the problem differently in order to
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clearly differentiate between the hypothetical ζt related to the Cauchy transform of

the unknown density ρt, and the function ft which will be constructed.

6.3.1 Required properties for ft. Assume that t > 0. The function ft:

1. Is analytic on the complement of the two cuts ±i/2t + [−β, β], where β is an

unknown positive real number, that possibly depends on t.

2. Satisfies the symmetries

ft(−z) = ft(z) = ft(z).

3. Has finite boundary values when approaching the cuts from above and from

below, which are related by

ft

(
x+

i

2t
± i0

)
= ft

(
x− i

2t
∓ i0

)
, x ∈ [β, β].

4. Has a pole of order two at infinity, and an expansion at infinity given by

ft(z) = z2 +

(
2

t2

)
1

z2
+O

(
1

z4

)
.

We remark that conditions 2 and 3 together imply that, if ft exists, then it is real

valued on the real and imaginary axes, and its boundary values on the cuts from

above and below are also real.

6.3.2. The clever construction introduced in [18] shows that it is not difficult to find

an explicit function that satisfies 1− 3 and the weaker condition 4’ given by

4’. ft has a pole of order two at infinity, and an expansion at infinity given by

ft(z) = z2 +O

(
1

z2

)
.
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Γ(z;β, t)

SC(s;β, t)

0

i

2t

β

Figure 6.1. Definition of SC and Γ

The basic idea, as we discussed briefly in section 3.2, is the following: Let β > 0 be

arbitrary, and let Γ(z; β, t) be the inverse of the Schwarz–Christoffel map SC(s; β, t)

that maps the upper half plane to the complement of the segment i/2t+ [0, β] in the

first quadrant Re z, Im z > 0, and that sends infinity to infinity (see figure 6.1).

Figure 6.2 shows the image under SC of an equally spaced rectangular grid on

the s-plane created with the Schwarz-Christoffel toolbox for Matlab, by Tobin A.

Driscoll.

Since Γ(z; β, t) is real valued on the positive real and imaginary axes, one can

analytically extend Γ(z; β, t) to C\{±i/2t+[−β, β]} by using the symmetry principle

and defining Γ(−z; β, t) = Γ(z; β, t) and Γ(z; β, t) = Γ(z; β, t). This extended map

Γ(z; β, t) satisfies all of the conditions required for ft except for possibly the expansion

at infinity. One can further check that Γ(z; β, t) has a pole of order two at infinity, and

so there is a unique linear combination a1Γ + a2, that has an expansion at infinity of

the form z2 +O(1/z2). Moreover, we will see that a1 and a2 are real, so that a1Γ +a2

will satisfy conditions 1 − 3, 4’, where 2 continues to hold since a1 and a2 are real.

We will analyze this construction in much more detail in section 6.5.

6.3.3. Using general arguments from the theory of Riemann surfaces one can prove

that this solution to 1−3, 4’ is unique among the functions with continuous extensions

to the cuts. In fact, condition 2 is not required to prove uniqueness, and conditions
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Figure 6.2. Image under SC of a rectangular grid in the upper half plane.

1, 3, and 4’ can be cast in the form of a non-local Riemann-Hilbert problem with a

unique solution.

6.3.4 Lemma. For any t, β > 0, the function a1Γ(z; β, t) + a2 described above is the

unique function with continuous extensions to the cuts that satisfies conditions 1, 3

and 4’.

Stated in different terms, for any t, β > 0, the function a1Γ(z; β, t) + a2 is the

unique solution to the following non-local Riemann-Hilbert problem: Find a function



108

f(z) with the following properties:

(RH1) f is analytic on the complement of the two cuts ±i/2t+ [−β, β].

(RH2) f has continuous extensions to the cuts (including the endpoints) related by

f

(
x+

i

2t
± i0

)
= f

(
x− i

2t
∓ i0

)
, x ∈ [β, β].

(RH3) The expansion of f at z =∞ given by

f(z) = z2 +O

(
1

z2

)
.

Proof. By condition (RH2) the function f(z) defines a function on the elliptic curve

constructed by opening up the two cuts ±i/2t + [−β, β] in the complex plane, and

glueing them together forming a handle (note that one is using only one copy of the

complex plane). Analyticity of this function (which by abuse of notation we will

continue to call f) outside the point corresponding to z = ∞ shows that f must be

an elliptic function of order two, with a single pole by (RH3). By Riemann Roch,

f must correspond to a (complex) linear combination of the Wierstrass ℘ function

in the uniformized elliptic curve. Since the coefficients in the expansion at infinity

give two conditions (because of the vanishing constant term), we conclude that f is

unique.

6.3.5. We will see that the the extra equation coming from the coefficient of z−2 in

condition 4 will fix the value of β as an analytic function of t for t > 0 which admits

an analytic extension to t = 0.

6.3.6 Proposition. For each t > 0 there is a unique value β = β(t) > 0 for which

there is a function satisfying conditions 1− 4 with continuous extensions to the cuts

(by the lemma this function is unique). Moreover, β(t) is analytic in t for t > 0, and

admits an analytic extension to t = 0, with limiting value β(0) = 2.
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Furthermore, the solution ft maps the complement of the segment i/2t+[0, β(t)] in

the first quadrant Re z, Im z > 0 conformally to the upper half plane, and the boundary

values satisfy the inequality

ft

(
x+

i

2t
+ i0

)
− ft

(
x+

i

2t
− i0

)
≤ 0,

for all x ∈ [0, β(t)].

The proof of the proposition is considerably involved, since ft is constructed ex-

plicitly. This will be done in section 6.5. The definition of ft is given in formula

(6.5.21). The construction comes from [18], and was further analyzed in [20]. Our

proposition adds a careful analysis of the analyticity in t of the quantities involved

in the construction and of the endpoint of the support, which are essential to prove

that the density ρt is analytic in t. .

Before going into the details of the construction of ft we show how one can es-

sentially backtrack the heuristic arguments described in section 6.2.6 to obtain the

(unique) extremal measure of It from ft.

6.4 Definition of ρt

6.4.1 Proposition. If ft is the solution to problem 6.3.1 given by proposition 6.3.6

(explicitly defined in (6.5.21) below), and one defines for x ∈ R

ρt(x) := − t

4π

[
ft

(
x+

i

2t
+ i0

)
− ft

(
x+

i

2t
− i0

)]
,

then ρt is non-negative, even, continuous, and locally the restriction of an analytic

function in the interior of its support [−β(t), β(t)].

Moreover, ρt is the unique extremal measure for It, and if one defines Wt and ζt

as in equations (6.2.8) and (6.2.10) using this ρt, then ft = ζt and all the formulas

in 6.2.6 are valid.
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Proof. Using the definition of ρt in the statement, define defineWt and ζt by formulas

(6.2.8) and (6.2.10). We start by proving that ft = ζt. Using the definition of ρt, it is

easy to see that for z outside the cuts one has

−2i

t
Wt

(
z − i

2t

)
=

1

2πi

∫
γ1

ft(s)

s− zds,

where γ1 is a loop around the top cut i/2t + [−β(t), β(t)] in the clockwise direction

that does not enclose z. Similarly, by using the fact that

ρt(x) = − t

4π

[
ft

(
x− i

2t
− i0

)
− ft

(
x− i

2t
+ i0

)]
,

which holds since ft commutes with conjugation and its boundary values on the cuts

are real, we see that
2i

t
Wt

(
z +

i

2t

)
=

1

2πi

∫
γ2

ft(s)

s− zds,

where γ2 is a loop around the bottom cut −i/2t + [−β(t), β(t)] in the clockwise

direction that does not enclose z. By the definition of ζt, it follows that

ζt(z) = z2 +
1

2πi

∫
γ1+γ2

ft(s)

s− zds.

This implies that ζt = ft since the right hand side can be seen to be equal to ft by

Cauchy’s theorem with ft at z, and relating this to the residue of the integrand at

infinity. In particular, this proves that ζt has finite boundary values on the cuts that

satisfy (6.2.11).

The fact that ρt is non-negative follows from proposition 6.3.6. To prove that ρt

is even recall that the boundary values of ft along the cuts are real. Using the two

symmetries ft(−z) = ft(z) = ft(z) of ft and the fact that t ∈ R, it is easy to see that

for x ∈ [−β(t), β(t)] we have ρt(−x) = ρt(x). To check that ρt is the restriction of an

analytic function to the interval (−β(t), β(t)), note that for x ∈ (−β(t), β(t)) we can

write

ρt(x) = − t

4π

(
ft

[
x+

i

2t
+ i0

]
− ft

[
x− i

2t
+ i0

])
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again by using the symmetries of ft and the fact that the boundary values of ft are

real. This implies that ρt(x) = ht(x+ i0) where

ht(z) := − t

4π

(
ft

[
z +

i

2t

]
− ft

[
z − i

2t

])
,

which is analytic outside the cuts ±i/t+[−β(t), β(t)] and the real interval [β(t), β(t)]

where it has a sign jump. Thus, ρt is the restriction to the real axis of the analytic

function h̃t(z) defined to be ht(z) above the real axis, and −ht(z) below the axis.

This concludes the proof that ρt is a continuous probability density. We now show

that it satisfies the variational inequalities for It.

Since ρt is the restriction of an analytic function in the interior of its support,

the real valued function Qt(x) from corollary 5.3.9 can be shown to be differentiable.

Indeed, one only needs to show that

Gt(x) :=

∫ β(t)

−β(t)

log |x− y|ρt(y)dy

is differentiable. This is proved by defining

Ft(z) :=

∫ β(t)

−β(t)

log(z − y)ρt(y)dy, z ∈ C \ (−∞, β(t)]

where log(z − y) is taken to be the principal branch of the complex logarithm in the

z-plane with cut along (−∞, y], and using the fact that for x ∈ (−β(t), β(t)) one

has Ft(x+ i0) = Gt(x) + iπ
∫ β(t)

x
ρt(y)dy. The claim that Gt(x) is differentiable then

follows from the fact that Ft(x+i0) is differentiable because one can move the contour

of integration below the real axis at x.

Thus, to prove that ρt satisfies the variational inequalities, it is sufficient to verify

the following conditions

Q′t(x) = 0 for x ∈ (−β(t), β(t))(6.4.2) ∫ x

β(t)

Q′t(x)dx ≥ 0 for x ≥ β(t)∫ x

−β(t)

Q′t(x)dx ≥ 0 for x ≤ −β(t).
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Now, by the Plemelj formulas (6.2.9) which hold by what we showed above about

ρt being the restriction of an analytic function, and the definition of ζt, we have

2i

t
Q′t(x) = ζt

(
x+

i

2t
+ i0

)
− ζt

(
x− i

2t
− i0

)
,

and the equality in (6.4.2) follows from the fact that ζt = ft and the properties of ft.

Regarding the inequalities, we have for x /∈ [−β(t), β(t)]

ft

(
x+

i

2t
+ i0

)
− ft

(
x− i

2t
− i0

)
= 2i Im ft

(
x+

i

2t

)
since ft commutes with conjugation. Then, since ft maps the complement of the

segment i/2t+ [0, β(t)] in the first quadrant Re z, Im z > 0 conformally to the upper

half plane (see proposition 6.3.6), we conclude (again since ζt = ft) that

Q′t(x) ≥ 0 if x ≥ β(t)

≤ 0 if x ≤ −β(t)

which gives the inequalities in (6.4.2) off the support. This completes the verification

that ρt is indeed the (unique) extremal measure for It.

6.4.3 The semicircle density. We remark that ρ0 is the semicircle density

(2π)−1
√

4− x2 since YN(0) = ZGUE
N , so that ρt is expected to converge to ρ0, but

the definition of ρt in terms of ft given by proposition 6.4.1 does not allow one to see

this directly. In fact, we will see that the function ft itself blows-up as t↘ 0, so the

definition of ρt in proposition 6.4.1 is singular on more ways than it is apparent by

just noticing the i/2t terms. Nonetheless, in section 6.6 we prove that ρt(x) depends

analytically on t for t > 0 and x in the interior of its support.

The graphs in figure 6.3, created by numerically solving for β(t) using equations

we describe below, and using the Schwarz-Christoffel toolbox for Matlab created by

Tobin A. Driscoll, illustrate the convergence of ρt to the semicircle density supported

on [−2, 2].
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Figure 6.3. Graphs of ρt(x) for x ≥ 0 and t = 1, t = 0.5, t = 0.1, t = 0.05.

6.5 Proof of proposition 6.3.6

Let β > 0, and let Γ(z; β, t) be the inverse of the Schwarz–Christoffel map SC(s; β, t)

that maps the upper half plane to the complement of the segment i/2t+ [0, β] in first
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quadrant Re z, Im z > 0 with the following pre-images for the vertices

s ↔ z

∞ ∞

0 0

−1 i/2t.

The choice of pre-vertices fixes SC(s; β, t) completely. It is given by

z = SC(s; β, t) = A

∫ s

0

s+ c√
s(s+ 1)(s+ b)

ds

where the path of integration is taken inside the upper half s-plane Im s > 0, and for

the square root we take a branch that is analytic in the upper half plane that gives

the positive square root on the positive real axis as one approaches it from above. In

most of what follows the choice of branch cuts will be irrelevant as long as they do

not intersect the upper half plane. Here A = A(β, t), b = b(β, t) and c = c(β, t) are

uniquely determined by β and t by the theory of Schwarz–Christoffel maps (see [23,

III, p. 323]), and the fact that

s ↔ z

−c i/2t+ β

−b i/2t

so that in particular −b < −c < −1 (see figure 6.4).

More explicitly, A, b, and c are uniquely determined by β and t through the equa-

tions

i

2t
= A

∫ −1

0

s+ c√
s(s+ 1)(s+ b)

ds,

β = A

∫ −c
−1

s+ c√
s(s+ 1)(s+ b)

ds,

−β = A

∫ −b
−c

s+ c√
s(s+ 1)(s+ b)

ds.
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Γ(z;β, t)

SC(s;β, t)

0−1−c−b 0

i

2t

β

Figure 6.4. Pre-images of the vertices of the polygon.

Note that the last two equations imply that c is the value that makes the loop

integral that goes around the interval [−b,−1] vanish (here we take [−b,−1]∪ [0,∞)

to be the branch cuts for the square root). I.e.,

(6.5.1) 0 =

∫ −b
−1

z + c√
z(z + 1)(z + b)

dz =
1

2

∮
z + c√

z(z + 1)(z + b)
dz.

6.5.2. Now, the expansion of Γ(z; β, t) at infinity is given by

(6.5.3) Γ(z; β, t) =
1

4A2
z2 + (2c− (1 + b)) +

4A2(2c− b+ 2bc− 3c2)

3

1

z2
+O

(
1

z4

)
,

which can be seen as follows: For all z in the first quadrant outside the cut we have

z = A

∫ Γ(z;β,t)

0

s+ c√
s(s+ 1)(s+ b)

ds,

so that for z close to infinity (which we know corresponds also to Γ close to infinity)

we have

z

A
=

∫ Γ

0

s+ c√
s(s+ 1)(s+ b)

ds

= 2
√

Γ +

∫ Γ

0

[
s+ c√

s(s+ 1)(s+ b)
− 1√

s

]
ds

= 2
√

Γ +

∫ ∞
0

[
s+ c√

s(s+ 1)(s+ b)
− 1√

s

]
ds

+

∫ Γ

∞

[
s+ c√

s(s+ 1)(s+ b)
− 1√

s

]
ds.
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Now, the first integral in the last expression is zero because of (6.5.1) by a contour

deformation argument (taking [0,∞] as the branch of
√
z as for

√
z(z + 1)(z + b)).

For the second integral we can taylor expand around s = ∞, and integrate term by

term to obtain∫ Γ

∞

[
s+ c√

s(s+ 1)(s+ b)
− 1√

s

]
ds =

1 + b− 2c√
Γ

+
4c+ 4bc− 2b− 3b2 − 3

12Γ3/2
+ . . .

This gives

z = 2A
√

Γ +
A(1 + b− 2c)√

Γ
+
A (−3− 3b2 − 2b+ 4bc+ 4c)

12Γ3/2
+ . . .

which one can invert by squaring( z

2A

)2

= Γ + (1 + b− 2c) +
b− 2bc− 2c+ 3c2

3Γ
+ . . .

and using (
2A

z

)2n

=
1

Γn
+O

(
1

Γn+1

)
,

which gives (6.5.3).

6.5.4. Equation (6.5.3) shows that the linear combination a1Γ + a2 of Γ that solves

the problem 1− 3, 4’ described in 6.3.2 is given by

(6.5.5) 4A2Γ(z; β, t) + 4A2(1 + b− 2c),

and it will satisfy condition 4 (see 6.3.1) only if the parameters satisfy the extra

condition

8A4t2
(
2c− b+ 2bc− 3c2

)
= 3.

We show below that enforcing this last equality defines A, b, c and β as ana-

lytic functions of t > 0, and that moreover, these functions admit an analytic or

meromorphic extension to a complex neighborhood of t = 0.
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6.5.6 Lemma. The system of equations

i

2t
= A

∫ −1

0

z + c√
z(z + 1)(z + b)

dz(I)

β = A

∫ −c
−1

z + c√
z(z + 1)(z + b)

dz(II)

−β = A

∫ −b
−c

z + c√
z(z + 1)(z + b)

dz.(III)

0 = 3− 8A4t2(2c− b+ 2bc− 3c2)(IV)

where

t, A, b, c, β > 0

b > c > 1

defines (At), b, c, β as (real) analytic functions of t for t > 0, where the function b(t)

is monotonically increasing in t for t > 0.

Moreover, all of these these functions admit an analytic extension to complex t in

a neighborhood of t = 0. The case t = 0 is singular, since A grows without bound as

t↘ 0, and corresponds to b = c = 1, β = 2, and At→ 1/4. The Laurent expansions

of these functions around t = 0 are given by

b(t) = 1 + 16t+ 128t2 + 656t3 + 2304t4 + . . .(6.5.7)

A(t) = 1/4t− 1 + t+ 3t2 − 5t3 − (55/2)t4 + . . .

c(t) = 1 + 8t+ 48t2 + 200t3 + 576t4 + 1116t5 + . . .

β(t) = 2− 2t2 + 15t4 − 165t6 + (8555/4)t8 − (121599/4)t10

+(3669003/8)t12 − (57721293/8)t14 + . . .

6.5.8 Remark. Note that the coefficients of neither of these Taylor expansions seem

to be converging to zero. This seems to indicate that all of these functions have a

singularity in the complex disk |t| ≤ 1.
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6.5.9 Remark. We remark that we have found no closed expression for these func-

tions. As will be seen in the proof, one needs to locally invert an expression for t in

terms of b.

6.5.10 Proof of lemma 6.5.6. For the proof it will be convenient to rescale A by

t to remove its singular behavior. It will also be convenient to scale β, so we define

the two new quantities

a := At

d := βt.

As was mentioned before, adding (II) and (III) we obtain equation (6.5.1), and

this shows that c is an analytic function of b. In the loop integral in (6.5.1) we are

taking the cuts along [−b,−1]∪ [0,∞]. One can also express c in terms b (which will

be of use below) by using the complete elliptic integrals E(k), K(k) as

(6.5.11) c(b) = b
E(k)

K(k)
,

where

E(k) =

∫ π/2

0

√
1− k2 sin2 α dα(6.5.12)

K(k) =

∫ π/2

0

dα√
1− k2 sin2 α

(6.5.13)

and

(6.5.14) k2 := 1− 1

b
.

Similarly, the integral in (I) is a loop integral which one may also write in terms

of complete elliptic integrals giving an equation for a as a function of b

(6.5.15) a(b) =
K(k)

2π
√
b
.
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The reader verifying this might may find Legendre’s relations [1, Ch 17] of use, which

state that E(k)K(k′) +E(k′)K(k)−K(k)K(k′) = π/2 where k′ =
√

1− k2. One can

also rewrite (III) in terms of incomplete elliptic integrals, and get

(6.5.16) d(b) = 2a
√
b
(
E(φ, k)− c

b
F (φ, k)

)
where

(6.5.17) φ(b) :=
1

2
arcsin

(
b+ 1− 2c

b− 1

)
+
π

4
.

These equations explicitly show that a, c and d are analytic functions of b for b > 0

(note that the expression inside the arcsine for φ is analytic at b = 1 because the

numerator is analytic in b and vanishes at b = 1).

Writing (IV) in terms of a, b, c gives

t2 =
8

3
a4(2c− b+ 2bc− 3c2),

where the expression on the right is a function of b, which we denote by T (b)

T (b) :=
8

3
a(b)4(2c(b)− b+ 2bc(b)− 3c(b)2),

so that t2 = T (b).

The derivative of T (b) can be expressed in the surprisingly compact form

T ′(b) =
−1

2π4b(b− 1)
E(k)K(k) (E(k)−K(k)) (bE(k)−K(k)) ,

which shows, in particular, that T ′(b) > 0 for b > 1 (as suggested by the graph in

figure 6.5). Together with the fact that T (1) = 0, this shows that for each b > 1 there

are only two t’s that make (IV) hold, given by t = ±
√
T (b) (real square root), and

only one t that is positive. This shows that

t(b) :=
√
T (b), b > 1

is an analytic function of b for b > 1, with an analytic inverse. One can check that

t(b)→∞ as b→∞.
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Figure 6.5. Graph of T (b) for b > 0.

Regarding the singular case t = 0 corresponding to b = 1, we know that t2 = T (b)

is analytic around b = 1, and so we have

t2 = (b− 1)2R(b)

for an analytic R(b), where R(1) 6= 0 since T ′(1) = 0 and T ′′(1) 6= 0 (see figure 6.5).

Then, since R(1) 6= 0, we can define a branch of the square root of R close to b = 1

so that (b−1)
√
R(b) agrees with

√
T (b) (the positive real square root) for b > 1. We

can then define

(6.5.18) t(b) := (b− 1)
√
R(b)

in a neighborhood of b = 1. This gives t as an analytic function of b close to b = 1

and agrees with
√
T (b) for b > 1. For real b this amounts to defining

t(b) =

{√
T (b) for b ≥ 1

−
√
T (b) for 0 < b < 1.

From the fact that t′(1) 6= 0, we see that t(b) is locally invertible around b = 1

with analytic inverse. Thus, we can define

b(t) := inverse of t(b)
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which is an analytic function of t for t ≥ 0 as claimed. This shows that a, b, c, d are

all analytic functions of t for t ≥ 0.

From the above, we see that the limiting value for b as t↘ 0 is b = 1, which gives

the values of the parameters in this singular case:

t = 0←→
a = 1/4
b = 1
c = 1
d = 0

(in particular this shows that A→∞ as t→ 0).

Thus, the solutions of (I)-(V) are analytic functions of t ∈ [0,∞) (except for A

which has a simple pole at t = 0), and given by

b(t) = inverse of t(b)

A(t) =
K(k(t))

2πt
√
b(t)

c(t) = b(t)
E(k(t))

K(k(t))

β(t) = 2t2A(t)
√
b(t)

(
E(φ(b(t)), k(t))− c(t)

b(t)
F (φ(b(t)), k(t))

)
where

k(t)2 = 1− 1/b(t)

φ(t) = φ(b(t)) :=
1

2
arcsin

(
b(t) + 1− 2c(t)

b(t)− 1

)
+
π

4

The Taylor expansions in (6.5.7) were found using Mathematica. This concludes the

proof of the lemma.

6.5.19 Remark. Even though an explicit expression for the endpoint β(t) of the

density as a function of t is unlikely to be found with this approach since it requires

an explicit expression for the inverse of
√
T (b), we note that the above allows one to

write down an explicit expression for β as a function of b. Concretely, for b > 1 we

have

β =
d(b)√
T (b)

.
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Calculating the behavior of β as t ↘ 0 is a tedious but straightforward task

using equations (6.5.11)-(6.5.18), from which one can see that β ↗ 2 as t ↘ 0. By

numerically solving for b given a value of t > 0, one can find the approximate values

of the endpoint β shown in table 6.1, which were used to create the graphs of ρt in

page 113.

t β(t)
1 1.59637

0.5 1.78324
0.1 1.98135
0.05 1.99509
0.01 1.9998

Table 6.1. Values of β(t)

6.5.20 Definition of ft. The proposition shows that the problem 6.3.1 for ft does

indeed have a solution, given by (see (6.5.5))

(6.5.21) ft(z) := 4A(t)2Γ(z; β(t), t) + 4A(t)2(1 + b(t)− 2c(t)),

where A, b, c, β are as given by the proof of lemma 6.5.6. This in particular shows the

inequality proposition 6.3.6 holds for t > 0 since A(t), b(t), c(t) are all real valued.

For future use, we nota that in terms of A, b and c, the expansion of ft at z =∞
is given by (see (6.5.3))

ft(z) = 4A2Γt(z) + 4A2(1 + b− 2c)

= z2 +
(2A)4

3

(
2c− b+ 2bc− 3c2

) 1

z2

+
(2A)6

5

(
−b− b2 + 2c+ 8bc+ 2b2c− 10c2 − 10bc2 + 10c3

) 1

z4
(6.5.22)

+
(2A)8

63

(
−9b− 20b2 − 9b3 + 18c+ 134bc+ 134b2c+ . . .

) 1

z6
+ . . .

This concludes the proof of proposition 6.3.6, and with it completes the construc-

tion of the density ρt.
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6.6 Analyticity of ρt in t.

With the explicit construction of ft and the analyticity of the coefficientsA(t), b(t), c(t)

showing up un the definition of of ft and Γ(z; β(t), t), we are now ready to prove the

following proposition.

6.6.1 Proposition. The density ρt(x) is analytic in t at t = t0 > 0 for any x0 ∈
(−β(t0), β(t0)).

Proof. By the definition of ρt from proposition 6.4.1, it is sufficient to prove that

Γ (x0 + i/2t± i0; β(t), t) are analytic in t at t = t0 > 0 for any x0 ∈ (0, β(t0)). Fix

t0 > 0 and x0 ∈ (0, β(t0)), and define

s±0 := Γt0 (x0 + i/2t± i0; β(t0), t0) ,

where we know that s+
0 and s−0 are real and,

−b(t0) < s+
0 < −c(t0) < s−0 < −1.

For s in the upper half plane and t > 0 we define

SCt(s) := SC(s; β(t), t),

where we recall that

(6.6.2) SCt(s) = A(t)

∫ s

0

s+ c(t)√
s(s+ 1)(s+ b(t))

ds,

and where the path of integration is taken in the upper half-plane. We also let

Γt(z) := Γ(z; β(t), t),

be the inverse of SCt(s), defined in the complement of the segment [0, β(t)] + i/2t in

the first quadrant Re z, Im z > 0.

The proof consists of analytically extending the definition of SCt(s) in both s and

t to complex neighborhoods of s±0 and t0 by using (6.6.2), and then using complex
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inverse function theorem to obtain an integral representation of Γt(z) that can be

continued in z past the cut in both directions, and makes sense for complex t close

to t0. This relies on the analyticity of A(t), b(t) and c(t) for complex t close to t0,

and must be done separately for each of the two points s+
0 and s−0 . We provide the

details for s+
0 .

We start by extending the meaning of the square root in (6.6.2) to complex t close

to t0 by defining

R(s, t) :=
√
s
√
s+ 1

√
s+ b(t)

where
√
s and

√
s+ 1 are principal branches, and for

√
s+ b(t) we take the branch cut

in the s-plane to be (−∞,−b(t0)] ∪ Lt where Lt is the straight segment connecting

−b(t0) and −b(t). For real t > 0 this agrees with the square root in SCt, and

corresponds to taking the branch cuts (−∞,−b(t)] ∪ [−1, 0], which do not affect the

definition of SCt(s) for real t > 0.

Recall now that we showed that tA(t), b(t), c(t) admit analytic extensions in the

complex t-plane to a neighborhood of the real non-negative t-axis t ≥ 0. Let Us+0
be a complex disc around s+

0 that does not contain −b(t0) or −c(t0), and let Vt0 be

a complex neighborhood of t0 where A(t), b(t), c(t) are analytic, A(t) 6= 0 (which is

possible since A(t) 6= 0 for any real t > 0), and that moreover satisfies

(−b[Vt0 ] ∪ −c[Vt0 ]) ∩ Us0 = ∅,

where by −b[Vt0 ] and −c[Vt0 ] we mean the images of Vt0 under t 7→ −b(t) and −c(t)
respectively.

Note that
√
s+ b(t) is jointly analytic in the set C\{(−∞,−b(t0)]∪−b[Vt0 ]}×Vt0 ⊆

C × C since b(t) is analytic in Vt0 , and its values avoid the cuts in s of the square

root. In particular, the function R(s, t) defined above is jointly analytic in s and t on

the set C \ {(−∞,−b(t0)] ∪ −b[Vt0 ] ∪ [−1, 0]} × Vt0 ⊆ C× C and extends the square

root function showing up in the definition SCt(s) to complex t ∈ Vt0 for the s in their

common domain (which excludes the s ∈ −b[Vt0 ]).
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For (s, t) ∈ Us+0 × Vt0 define

S̃C
+

t (s) := A(t)

∫ s

0

s+ c(t)

R(s, t)
ds

where the path of integration is taken along the upper half plane avoiding the set

−b[Vt0 ] up to a point in Us+0 (say s+
0 ), and then inside Us+0 to the point s. By the

above remarks on R(s, t), if (s, t) ∈ Us+0 × Vt0 with s in the upper half s-plane and

t is real, then S̃C
+

t (s) = SCt(s), and so S̃C
+

t (s) is a local extension of SCt(s) both

to complex t close to t0, and to s past the real axis to a neighborhood of s+
0 . The

important fact to note is that S̃C
+

t (s) is jointly analytic in s and t in Us+0 × Vt0 since

the integrand is jointly analytic in s and t in Us+0 × Vt0 , and the same holds for its

derivative
(
S̃C

+

t

)′
(s) since it is the integrand itself.

For t > 0 and complex w with Rew > 0, Imw > −1/2t and w /∈ (0, β(t)) we

define

G(w, t) := Γt

(
w +

i

2t

)
,

which for fixed t is the inverse of s 7→ SCt(s) − i/2t. Thus, G(w, t) has a cut at

(0, β(t)] as a function of w, which corresponds to the cut of Γt(z) at i/2t + (0, β(t)].

Note that we have

s±0 = Γt (x0 ± i/2t+ i0) = G(x0 ± i0, t).

We want to show that G(x0 + i0, t) is (real) analytic at t = t0. We will do this

by showing that G(w, t) admits an analytic extension in w to a neighborhood of x0

(i.e., past the cut), and then show that this extension is jointly analytic in w and t

at (x0, t0).

Since s 6= −c(t) and A(t) 6= 0, for (s, t) ∈ Us0×Vt0 , it follows that
(
S̃C

+

t

)′
(s) 6= 0,

and so S̃C
+

t (s) is locally invertible in s for all t ∈ Vt0 . If we let G+(w, t) be the inverse

of s→ S̃C
+

t (s)−i/2t, then we see that for real t close to t0 this G+(w, t) is an analytic

extension of G(w, t) to a neighborhood of w = x0 (i.e., an extension past the cut). In
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particular, for t = t0 we obtain an extension of G(w, t0) to a neighborhood of x0, so

that we have

G(x0 + i0, t0) = G+(x0, t0).

By the complex inverse function theorem we have the integral representation

G+(x0, t0) =

∫
γ0

s
(
S̃C

+

t0

)′
(s)(

S̃C
+

t0
(s)− i/2t0

)
− x0

ds,

where γ0 is a sufficiently small loop contained in Us0 enclosing s0. Now, if t is complex

and sufficiently close to t0, then the above representation continues to hold in the sense

that for all t in a complex neighborhood of t0 we have

G+(x0, t) =

∫
γ0

s
(
S̃C

+

t

)′
(s)(

S̃C
+

t (s)− i/2t
)
− x0

ds,

(we need to have s+
0 (t) := G+(x0, t) inside γ0 and the image of γ0 under S̃C

+

t (s)−i/2t
to be contained in the domain of definition of G+(w, t)). Now, since the integrand

above is analytic in t for all s ∈ γ0 by construction, this shows that G+(x0, t) is (real)

analytic in t at t = t0, and so

Γt

[
x0 +

i

2t
+ i0

]
= G+(x0 + i0, t) = G+(x0, t)

is (real) analytic in t at t = t0 as claimed.

A similar argument works for the other boundary value s−0 .

6.7 Proof of (6.2.3)

We can now prove (6.2.3) using the the analyticity of ρt in t. The starting point is

the identity

lim
N→∞

− 1

N2
logZN(t) = It[ρt]

=

∫∫
log

√
1 + t2(x+ y)2

|x− y| ρt(x)ρt(y)dxdy +

∫
x2

2
ρt(x)dx
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Now make the substitution u = tx, v = ty, which gives

It[ρt] = log t+
1

2t2

∫
u2ψt(u)du+

∫∫
log

√
1 + (u+ v)2

|u− v| ψt(u)ψt(v)dudv

where

ψt(u) :=
1

t
ρt

(u
t

)
and the log t term comes from the change of variables in the double integral and the

fact that ψt is also a probability density. Note that ψt converges to a point mass at

the origin as t → 0, but also that we will be dealing with t > 0 throughout. Now

differentiate with respect to t to obtain

d

dt
It[ρt] =

1

t
− 1

t3

∫
u2ψt(u)du+

1

2t2

∫
u2 ∂

∂t
[ψt(u)] du

+ 2

∫∫
log

√
1 + (u+ v)2

|u− v| ψt(v)
∂

∂t
[ψt(u)] dudv

using symmetry in the double integral. Combining the integrals gives

d

dt
It[ρt] =

1

t
− 1

t3

∫
u2ψt(u)du

+

∫ [
1

2t2
u2 + 2

∫
log

√
1 + (u+ v)2

|u− v| ψt(v)dv

]
∂

∂t
[ψt(u)] du.

The variational equality from corollary 5.3.9 then implies that the term inside

parenthesis is equal to `− log t on the support of ψt, and so

d

dt
It[ρt] =

1

t
− 1

t3

∫
u2ψt(u)du+ (`− log t)

∫
∂

∂t
[ψt(u)] du

=
1

t
− 1

t3

∫
u2ψt(u)du,

since
∫

∂
∂t

[ψt(u)] du = 0 as ψt is a probability density. Going now back to the x

variable in the last integral gives identity (6.2.3) for t > 0, as claimed.
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6.8 Expansion around t = 0

Now that we know that (section 6.7)

d

dt
It[ρt] =

1

t
− 1

t
m2(t),

for t > 0, where

m2(t) =

∫
x2ρt(x)dx,

we can find a Taylor expansion around t = 0 for

lim
N→∞

log ẐN(t) = I0[ρ0]− It[ρt].

More precisely we will see that the right hand side admits and analytic extension

to t = 0. One way to do this (this is what was done in the physics literature) is to

notice that the expansion (6.2.12) of ζt at infinity contains m2(t) in the coefficient of

z−4, and since ζt = ft, one also has an expression the the coefficient of z−4 in terms

of A(t), b(t), c(t) by from (6.5.23). This gives the following equality

12t2m2(t)− 1

2t4
=

(2A)6

5

(
−b− b2 + 2c+ 8bc+ 2b2c− 10c2 − 10bc2 + 10c3

)
,

from which one concludes that m2(t) admits a meromorphic extension to a neighbor-

hood of t = 0 (recall that A(t) has a pole at t = 0). By further using the expansions

of A, b, c around t = 0 one sees that m2(t) is in fact analytic at t = 0, with expansion

given by

m2(t) = 1− 2t2 + 14t4 − 138t6 + 1608t8 − 20736t10

+ 286452t12 − 4160274t14 + 62772488t16

− 976099152t18 + 15552756144t20 − 252856594128t22

+ 4181199178176t24 − 70146006867072t26 + . . .

This shows that I0[ρ0]− It[ρt] admits an analytic extension to t = 0, with Taylor
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expansion given by

I0[ρ0]− It[ρt] = − 2

2!
t2 +

84

4!
t4 − 16560

6!
t6 +

8104320

8!
t8

−7524679680

10!
t10 +

11434247193600

12!
t12 − . . .

6.9 The family of elliptic curves degenerating to a nodal curve
as t→ 0

Even though it was of no use in the above considerations, we would like to bring

attention to the fact that the function ft is a meromorphic function on an elliptic

curve Et, and that the isomorphism class of the elliptic curve is varying as t varies.

This might give some insight to the situation in future considerations.

More explicitly, using the equation

z = A(t)

∫ Γt(z)

0

s+ c(t)√
s(s+ 1)(s+ b(t))

ds,

for z in the first quadrant outside the cut, one can find the differential equation that

Γt satisfies, and conclude that the map

Et → CP2,

p 7→ [Γt(p) : Γ′t(p) : 1],

gives a biholomorphic map onto the elliptic curve defined by

A(t)2y2(x+ c(t))2 = x(x+ 1)(x+ b(t)),

which is isomorphic to the elliptic curve in Legendre normal form defined by

y2 = x(x+ 1)(x+ b(t)).

Since b(t) is not constant for t > 0, we see that the isomorphism class of Et is varying

in t, and since t↘ 0 corresponds to b↘ 1, we see that the limiting curve E0 is singular



130

since the cubic gets a repeated factor. In other words, the family Et degenerates to

a nodal rational curve at t = 0.

The j invariant of Et therefore only depends on b(t), and it is given by

j(t) = 256
(b(t)2 − b(t) + 1)3

b(t)2(b(t)− 1)2
.

Under this identification the function Γt gets identified with the projection onto

the x coordinate (in both algebraic curves).
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Appendix A

Combinatorial interpretation expectation of
powers of traces

In this appendix we show how the expectations of the form

〈(
TrM1

)n1
(
TrM2

)n2 . . . (TrMν)nν
〉
,

where 〈f〉 denotes the expectation of f with respect to GUE measure µ̃N (1.1.1)

〈f〉 :=

∫
fdµ̃N(M),

are related to counts of combinatorial objects. We start by discussing a particularly

simple case.

A.1 The case of TrM 4

Note that in terms of the entries of the matrix we have

TrM4 =
N∑

i,j,k,l=1

mijmjkmklmli

where one should notice the cycle present in the indices of the m’s. Thus

(
TrM4

)n
=

N∑
i1, . . . , in
j1, . . . , jn
k1, . . . , kn
l1, . . . , ln

=1

(mi1j1mj1k1mk1l1ml1i1)(mi2j2mj2k2mk2l2ml2i2) . . .
. . . (minjnmjnknmknlnmlnin)

which we write compactly as

(
TrM4

)n
=
∑
σ

Mσ
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where σ = (i1, i2, . . . , in, j1, . . . , jn, k1, . . . kn, l1, . . . , ln) runs over the N4n choices for

each index from 1 to N and Mσ is defined as

Mσ = (mi1j1mj1k1mk1l1ml1i1)(mi2j2mj2k2mk2l2ml2i2) . . . (minjnmjnknmknlnmlnin),

(the reason why we have kept the parenthesis will be apparent below).

Now, for the expectation of (TrM4)
n we have

〈(
TrM4

)n〉
=
∑
σ

〈Mσ〉 ,

and to compute 〈Mσ〉 one may use Wick’s lemma.

A.1.1 Lemma (Wick’s Lemma). If f1, . . . , f2m are 2m linear functions of Gaussian

mean zero independent random variables (meaning that each fi is a linear combination

of these random variables), then

〈f1 . . . f2m〉 =
∑

couplings
〈fi1fj1〉〈fi2fj2〉 . . . 〈fimfjm〉

where 〈f〉 denotes expectation with respect to the joint probability distribution of the

Gaussian variables, and where a coupling of the set {f1, f2, . . . , f2m} is a partition of

the set into m sets of 2 elements

{f1, f2, . . . , fn} = {fi1 , fj1} t {fi2 , fj2} t . . . t {fim , fjm}

where the ordering is not important.

For a proof of Wick’s lemma see lemma 7.6 in [15].

A.1.2. A way to visualize a coupling is to write the 2m terms next to each other

f1 f2 f3 . . . f2m−1 f2m

and connect the two terms in the set {fi∗ , fj∗} with an arc for ∗ = 1, . . . ,m. Regarding

the number of couplings, note that there are
(

2m
2

)
choices for the first pair,

(
2m−2

2

)
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choices for the second pair, and so on, and since the order of the m pairs is not

important, we see that there are(
2m
2

)(
2m−2

2

)
. . .
(

2
2

)
m!

=
(2m)!

2mm!
= 1 · 3 · 5 · . . . · (2m− 1) =: (2m− 1)!!

distinct couplings.

A.1.3. We remark that Wick’s lemma is of particular use in this setting, since one

can check that for products of two matrix entries one has

〈mijmkl〉 = δilδjk,

because if i = l and j = k then mijmkl = |mij| = (Re mij)
2 + (Im mij)

2 and we get〈
(Re mij)

2 + (Im mij)
2〉 = 2(1/2) = 1, and if this is not the case, then mijmkl is a

quadratic form of distinct and independent random variables, and so its expectation

is equal to zero.

A.1.4. Going back to the expectation of (TrM4)
n, we can now write〈(

TrM4
)n〉

=
∑
σ

∑
couplings
of the 4n

terms in Mσ

〈C1〉 . . . 〈C2n〉

where Ci = mαβmγδ if Ci is the couple corresponding to {mαβ,mγδ}. Note that this

is jumbling-up the indices in a non-trivial way because of the cycles in the double

indices.

Note that 〈C1〉 . . . 〈C2n〉 is either 0 or 1, and it is 1 only when some conditions for

the double indices in all of the couples in the coupling are satisfied. Specifically, if

C = mαβmγδ, then

〈C〉 = 1⇐⇒ α = δ and β=γ

which is independent of the actual values of α, β, γ, δ as long as the equalities hold.

This shows that the value of 〈C1〉 . . . 〈C2n〉 only depends on the coupling, and not
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on the specific values of the indices. Because of this, we may change the order of

summation above to obtain

〈(
TrM4

)n〉
=

∑
couplings

of the 4n double
indices in Mσ

∑
σ

〈C1〉 . . . 〈C2n〉

where we are now considering the couplings of the generic 4n double indices

{i1j1, j1k1, k1l1, l1i1, i2j2, . . . . . . , injn, jnkn, knln, lnin}

and then assigning them specific values when we sum over σ. In this case C = mαβmγδ

if C is the couple corresponding to the indices {αβ, γδ}.

A.1.5 Example n = 1. We have

TrM4 =
N∑

i,j,k,l=1

mijmjkmklmli,

and if we compute 〈TrM4〉 using Wick’s lemma we get

〈
TrM4

〉
=

∑
couplings

of the 4 double
indices in Mσ

∑
σ

〈C1〉〈C2〉

where in this case we need to consider the couplings of the four double indices

{ij, jk, kl, li}

(we can drop the subindex of the indices in this case since it is not necessary).

There are 3 such couplings, given by

A. {ij, jk}, {kl, li}

B. {ij, kl}, {jk, li}
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C. {ij, li}, {jk, kl}

and so we have〈
TrM4

〉
=

∑
σ

〈mijmjk〉〈mklmli〉+ 〈mijmkl〉〈mjkmli〉+ 〈mijmli〉〈mjkmkl〉

=
∑
σ

δik +
∑
σ

δilδjkδjiδkl +
∑
σ

δjl

= N3 +N +N3

= 2N3 +N

A.1.6 Four-valent diagrams. We now explain an interpretation for the exponents

and the coefficients for N that we are obtaining.

To figure out which indices σ make 〈C1〉 . . . 〈C2n〉 6= 0 for a given coupling we

construct the following graph: we set up n vertices, corresponding to the n groups of

indices (according to the parenthesis) in

Mσ = (mi1j1mj1k1mk1l1ml1i1)(mi2j2mj2k2mk2l2ml2i2) . . . (minjnmjnknmknlnmlnin)

and to each vertex we assign four double edges, as shown in figure A.1

1

i1 j1

j1

k1

k1l1

. . .

l1

i1

2

i2 j2

j2

k2

k2l2

l2

i2

n

in jn

jn

kn

knln

ln

in

Figure A.1. n four-valent vertices.

Each double edge corresponds to one tuple of indices that appears in the group

corresponding to that vertex. For example, the first vertex has a double edge cor-

responding to i1j1 (pointing upwards in the picture). Now, if we are going to pair

say i1j1 with some other double index say jnkn we can connect the double edges

corresponding to them and if we do this for all edges we get a coupling.



136

We call the resulting directed labeled multi-graph a diagram with four valent

vertices. One can clearly see that this construction is bijective, in the sense that

there is a a bijection between the couplings and diagrams.

A.1.7 The reason why the double edges and arrows are useful. Note that

to encode the coupling we really do not need double edges (we could use single edges

with labels (i∗j∗), for example). The real use of the double edges is to encode the

information that makes 〈C1〉 . . . 〈C2n〉 6= 0 as we now explain. Each edge in the double

edge corresponds to one of the indices and we add orientations to the sides of the

double edge by specifying that the first index corresponds to the edge with outgoing

orientation, and the second index corresponds to the one with incoming orientation.

Then when we join the edges and we make sure the orientations match, and for

example, in the case of pairing i1j1 with jnkn this will look as shown in figure A.2.

i1

j1 jn

kn

1 n

Figure A.2. The connection of the half-edges.

Note that making the orientations match is precisely matching the indices accord-

ing to the rule which make 〈mi1j1mjnkn〉 = 1, i.e. i1 = kn and j1 = jn .

In general coupling of the double edges matching the orientations is encoding the

equalities of the indices that will make that couple to give 〈mc〉 6= 0. If c is the couple

corresponding to αβ and γδ then 〈mαβmγδ〉 = 1 if and only if α = δ and β = γ, and

this will be encoded in the graph as

α

β γ

δ

Figure A.3. The indices in the connection of two half edges.
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A.1.8 The faces of a diagram. Thus, from the graph we construct from a given

pairing we can clearly see which conditions on the 4n indices {iν , jν , kν , lν}nν=1 imply

that for that particular coupling we obtain

〈C1〉 . . . 〈C2n〉 = 1,

by following the labels of individual edges. These conditions are always given as

equalities of particular indices (e.g. i1 = j7 = i3 = k5 and j3 = l2), and are always

cycles, since each individual index appears both as an incoming and an incoming

index, and so the rules eventually cycle back you where you started. We call these

cycles of indices faces.

A.1.9 Example n = 1. As we discussed above, there are 3 couplings given by

A. {ij, jk}, {kl, li}

B. {ij, kl}, {jk, li}

C. {ij, li}, {jk, kl}

and the diagrams we obtain from the couplings are shown in figure A.4.

i
i

j
jk

k

l
l i

i

j
jk

k

l
l i

i

j
jk

k

l
l

A. B. C.

Figure A.4. The three four-valent diagrams with one vertex.

Note that following the arrows in the diagram corresponding to coupling A one
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obtains the cycles
i→ k → i
l→ l
j → j

from which we can read the conditions i = k, l = l, j = j which are the conditions

that make the term 〈mijmjk〉〈mklmli〉 corresponding to the coupling be nonzero (and

so equal to 1) as was discussed in A.1.5.

For coupling B we have the cycle

i→ l→ k → j → i

from which we see that for the term 〈mijmkl〉〈mjkmli〉 corresponding to the coupling

to be nonzero (and so equal to 1) we must have i = j = k = l, so all indices must be

equal. Note that in the computation

〈
TrM4

〉
=

∑
σ

〈mijmjk〉〈mklmli〉+ 〈mijmkl〉〈mjkmli〉+ 〈mijmli〉〈mjkmkl〉

=
∑
σ

δik +
∑
σ

δilδjkδjiδkl +
∑
σ

δjl

= N3 +N +N3

= 2N3 +N

the exponent of N that shows up is the number of faces of each coupling.

A.1.10 The count for an arbitrary power of TrM4. For general n see that if

the four-valent diagram of the coupling has F faces then∑
σ

〈C1〉 . . . 〈C2n〉 = NF

since 〈C1〉 . . . 〈C2n〉 = 1 only if all the indices in each cycle are equal, and there are

N choices for the value of the index of each cycle (which we had already seen in the

example n = 1 above).
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Therefore,

〈(
TrM4

)n〉
=

∑
couplings of
the 4n double
indices in Mσ

∑
σ

〈C1〉 . . . 〈C2n〉 =
∞∑
F=1

AFN
F

where AF is the number of couplings with F faces (note this sum is finite since F can

be at most 3n).

A.2 The general case

There is nothing special about valence 4 in the above discussion, and one may consider

expectations of the form

〈(
TrM1

)n1
(
TrM2

)n2 . . . (TrMν)nν
〉
.

Here, as we explain below, the Wick couplings will correspond to diagrams with

n1 vertices of valence 1, n2 vertices of valence 2 and so on (we will see that the

expectation is 0 if the sum of the valences of all the vertices is not even, so only cases

where we can make couplings are of interest).

A.2.1 Definition. A (labeled) diagram with nj vertices of valence j is an

oriented labeled multi-graph with the following properties:

• There are
∑
nj vertices which are numbered by tuples

(a, b) = (vertex #, valence),

where b is half the number of edges incident to it (which we call the valence of

the vertex) and a = 1, . . . , nb.

• The 2b edges incident to vertex (a, b) are grouped in consecutive pairs while

moving clockwise, with one oriented edge pointing outwards and one oriented
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inwards. The incoming edge of each double edge is always clockwise from the

outgoing edge.

• The 2b edges incident to vertex (a, b) are labeled clockwise by

i
(a,b)
1 , i

(a,b)
2 , . . . , i

(a,b)
b ,

where each index is the label of the incoming edge of a double edge, and also

of the the outgoing edge of the next double edge (moving clockwise around the

vertex). For example, figure A.5 shows the second vertex of valence 4.

i
(2,4)
1

i
(2,4)
1

i
(2,4)
2

i
(2,4)
2

i
(2,4)
3

i
(2,4)
3i

(2,4)
4

i
(2,4)
4

(2, 4)

Figure A.5. The second vertex of valence 4.

• Each pair of oriented edges is paired to another pair of oriented edges (possibly

from the same vertex) in such a way that the orientations match. We call the

resulting double oriented edges the edges of the diagram. The intersections

between edges are ignored.

For example, figure A.6 shows a diagram with two vertices of valence two, and two

vertices of valence three.
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(1, 3)

i
(1,3)
1

i
(1,3)
2

i
(1,3)
2

i
(1,3)
3

i
(1,3)
3

i
(1,3)
1

(2, 2)

(1, 2) (2, 3)

i
(2,3)
1

i
(2,3)
2

i
(2,3)
2

i
(2,3)
3

i
(2,3)
3

i
(2,3)
1

i
(2,2)
2

i
(2,2)
2

i
(2,2)
1

i
(2,2)
2

i
(1,2)
1

i
(1,2)
1

i
(1,2)
2

i
(1,2)
2

Figure A.6. A diagram with two vertices of valence two and two vertices of valence
three.

A.2.2. We remark that the particular way in which the edges are connected is not

important. What is important is the information of which edges are connected with

each other. In particular, there are many ways to draw the diagram in figure A.6 (in

particular the “intersection” of the edges can be avoided for this diagram).

A.2.3 Combinatorial interpretation of (TrM1)
n1 (TrM2)

n2 . . . (TrMν)nν . We
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start by expanding (TrM1)
n1 (TrM2)

n2 . . . (TrMν)nν . We have

(TrM j)nj =

 N∑
i1,...,ij=1

mi1i2 . . .miji1

nj

=

 N∑
i
(1,j)
1 ,...,i

(1,j)
j =1

m
i
(1,j)
1 i

(1,j)
2

. . .m
i
(1,j)
j i

(1,j)
1

×
 N∑
i
(2,j)
1 ,...,i

(2,j)
j =1

m
i
(2,j)
1 i

(2,j)
2

. . .m
i
(2,j)
j i

(2,j)
1

× . . .
. . .×

 N∑
i
(nj,j)

1 ,...,i
(nj,j)

j =1

m
i
(nj,j)

1 i
(nj,j)

2

. . .m
i
(nj,j)

j i
(nj,j)

1


=

∑
1 ≤ k ≤ nj

1 ≤ i
(k,j)
1 , . . . , i

(k,j)
j ≤ N

nj∏
s=1

m
i
(s,j)
1 i

(s,j)
2

. . .m
i
(s,j)
j i

(s,j)
1

,

one so one can write (TrM1)
n1 (TrM2)

n2 . . . (TrMν)nν as

ν∏
j=1

(TrM j)nj =
∑

1 ≤ r ≤ ν
1 ≤ k ≤ nr

1 ≤ i
(k,r)
1 , . . . , i

(k,r)
j ≤ N

ν∏
j=1

nj∏
s=1

m
i
(s,j)
1 i

(s,j)
2

. . .m
i
(s,j)
j i

(s,j)
1

.

If we then use Wick’s lemma on the expectation of the product on the right, then

each resulting term from a coupling will correspond uniquely to one of the diagrams

defined in A.2.1. Note that if
∑

j njj (the sum of the valences of all the vertices, and

the number of terms in the product above) is not even, then we cannot use Wick’s

lemma, but then
〈∏ν

j=1(TrM j)nj
〉

= 0 because in the last equation all monomials

have an odd number of terms and making the substitutionM ↔ −M gives the result.

This gives a unique diagram for each coupling, and so gives a bijection between
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the couplings and the diagrams, and so one obtains

〈(
TrM1

)n1
(
TrM2

)n2 . . . (TrMν)nν
〉

=
∞∑
F=1

AF,n1,...nνN
F

where AF,n1,...nν is the number of diagrams with F faces with nj vertices which are

j-valent.

A.3 The relationship with maps

A.3.1 From vertices to stars. If one takes a diagram and collapses its double

edges to single edges without orientation, one obtains a regular graph, and to be able

to recover the diagram from this procedure one needs to retain some information.

A way to do this is to specify the orientation of the collapsed vertices (using some

convention), and leave a special marking on the edge that corresponded to the i1i2

edge at each vertex (see figure A.5). An example of this “collapsing” procedure is

shown in figure A.7, where the arrow around the collapsed vertex is there to specify

the orientation of the vertex, so that when one “fattens” the edges back one knows

which is the outgoing and which is the incoming arrow. In such a way, we obtain a

star as discussed in 2.1.1, where we are ignoring the colors since we have discussed

everything for the case of one matrix where the type of a star is determined by its

valence. It is clear that this gives is a bijection between the vertices of diagrams and

the stars 2.1.1.

i
(2,4)
1

i
(2,4)
1

i
(2,4)
2

i
(2,4)
2

i
(2,4)
3

i
(2,4)
3i

(2,4)
4

i
(2,4)
4

(2, 4)
v
(4)
2

⇐⇒

Figure A.7. Collapsing a vertex of valence 4 into a star of type q4(M) = M4.
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A.3.2 The oriented surface defined by a connected diagram. Note that each

face of the diagram (given by a cycle following the arrows in the diagram) defines

a glueing map of a 2-cell (disc) onto the boundary of the diagram. If one takes a

connected diagram, and glues these discs, one will end up with a connected surface.

Since exactly two faces are glued to each edge of the diagram, the surface has no

boundary, and since it is constructed using finitely many 2-cells, it will be compact.

In such a way, each diagram can be interpreted as a cellular structure of a surface (see

for example [17] for the theory of CW-complexes), and using cellular homology one

can see that this surface is always orientable (one shows that H2 = Z by studying the

boundary map from faces to edges, and using the fact that every edge only shows up

in only two faces and with opposite orientation if one uses the cycles in the diagrams

to orient the faces). We do not supply the details here, but instead illustrate the

construction for two of the diagrams we saw in the expansion of 〈Tr M4〉 in figure

A.8.
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i
i

j
jk

k

l
l

i
i

j
jk

k

l
l

i
i

jjk
k

l
l

i i

j
jkk

l l

Figure A.8. The diagrams embedded in their corresponding surfaces.

A.3.3. We remark that because of the arrows on each vertex, the diagram not only

defines the surface, but determines also determines an orientation on the surface. We

call the corresponding oriented surface, together with its diagram as in figure A.8 the

embedding of the diagram.

A.3.4 The genus of the surface. Using Euler’s formula, one sees that the genus

of the resulting surface is directly related to the number of faces of the diagram, which

correspond to the number of discs used in the above construction. More precisely, if

a connected diagram has nj vertices of valence j, then the genus g and the number
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of faces are related by

2− 2g = V − E + F

=
ν∑
j=1

nj −
1

2

ν∑
j=1

jnn + F

=
1

2

ν∑
j=1

(j − 2)nj + F.

We call g the genus of the diagram.

A.3.5 From diagrams to maps. Finally, if to an embedded diagram one preforms

the collapsing construction described in A.3.1, one obtains a map as in chapter 2 (we

described here for the case with only one matrix, where the types of the vertices -

using the terminology in 2.1.1 - are only determined by their valence). This procedure

is illustrated in figure A.9, where since all the vertices have type M3, where we have

simplified the labeling scheme of the diagram slightly since all vertices have the same

type.

Note that the orientations at all the collapsed vertices agree, and correspond to a

fixed orientation of the surface.

A.3.6 The notion of equivalence of maps. Since the integrals we have discussed

have a precise interpretation in terms of counts of diagrams, to have a precise state-

ment of the genus expansion in terms of maps (such as the one we gave in section

2.1), one needs to define equivalence of the maps to correspond to equality of the

associated diagrams, where two diagrams are equal if the couplings that define them

are the same. Viewing the diagram as the data of a CW-complex structure of the

surface, together with a fixed orientation on this surface, it follows that the diagrams

corresponding to two maps are equal if and only if there is an orientation preserving

homeomerophism of the surface taking one map to the other that is compatible with

all the labels and special markings on the maps. This is the definition of equivalence

of maps we gave in 2.1.3.
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1

i1 j1

j1

k1k1

i1 2

i2 j2

j2

k2k2

i2

3

i3

j3

j3k3

k3

i3

4

i4 j4

j4

k4k4

i4

3

2

4

1

⇐⇒

Figure A.9. The bijection between diagrams and maps.
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Appendix B

The dual of a Diagram.

In this appendix we present a construction of the dual diagram of a diagram. The

arguments will be given for the case in which there is only one matrix, where the type

of a vertex (or star) is determined just by its valence. We assume the diagrams are

labeled as in appendix A, where we recall that the faces of the diagram, which are

the oriented cycles in the diagram, are not assumed to be labeled explicitly.

B.1 Definition of the dual diagram. We construct the dual diagram as follows:

1. Make a vertex for each face F of the diagram, and give each vertex as many

(double) half-edges as the boundary of the face F has. If the original face had a

label, use it as the label of this new vertex, otherwise leave the face unlabeled.

Give the half-edges orientations with the incoming edge of each double edge

clockwise from the outgoing edge (just as in the original diagram). Now label

the edges counter-clockwise with the labels that the boundary of F has with its

given orientation with each label appearing in two consecutive edges, each from

a different double edge. For example, if F is the face

σ → τ → υ → . . . ,

then the corresponding (dual) vertex F has labeled edges as in figure B.1

τ

υ F

σ
σ

τ

υ

Figure B.1. Labeling of the edges of the dual of face F .
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Note that the labeling scheme of the dual vertex is “increasing" in the opposite

direction as the labels of a canonically labeled vertex (which increase clockwise).

This will be discussed below.

2. Couple the double edges according to the following rule: If σ is any label in the

original diagram, and the double edge with outgoing edge labeled with σ has

incoming edge labeled with τ , then in the dual diagram we pair the outgoing

edge τ with the incoming edge σ (note the reversal of the roles of incoming and

outgoing indices).

In the case when the diagram has canonical labeling, this corresponds to pairing

outgoing i(a,b)α with incoming i(a,b)α−1 , where it is understood that if α = 1, then

α− 1 is replaced by b.

3. As described below, the faces of this dual diagram are in one to one correspon-

dence with the vertices of the original diagram. If the vertices of the original

diagram had labels, use these labels to label the faces of the dual diagram.

We must check that the description of the pairing in step 2 is compatible when done

on both ends of the double edge. This is the case because if in the original diagram

we have an edge between faces F and F ′ as in the figure,

σ

σ

τ

τ

µ

λ

F

F ′
λ

µ

Figure B.2. Edge in the original diagram separating faces F and F ′.

then in the dual diagram, the pairing of outgoing τ with incoming σ is the same

as the pairing of outgoing µ with incoming λ as seen in the figure below.
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τ

σ

F

λ

µ

F ′

σ

µ

τ

λ

Figure B.3. Definition of the pairing in the dual diagram.

Regarding the faces of the dual diagram, note that they are in correspondence

with the vertices of the original graph. For example, if the diagram has canonical

labeling, the dual face to vertex (a, b) is the face corresponding to the cycle

i
(a,b)
b → i

(a,b)
b−1 → . . .→ i

(a,b)
1 → i

(a,b)
b ,

in the dual diagram (which is present in the dual diagram because of step 1). Ac-

cording to step 3, this dual face gets the label (a, b).

Thus, the dual diagram has as many (double) edges as the original diagram, it

has as many faces as the number of vertices of the original diagram, and as many

vertices as the number of faces of the original diagram.

B.2 Why the dual diagram is indeed a dual in a topological sense. If we

assume the original diagram is connected, then we can view it as a map embedded in

an oriented surface as described in A.3. Given a map, its dual is a graph embedded

in the same surface which is constructed by defining a vertex inside each face, and

then connecting these vertices by an edge if the corresponding faces share and edge

(the faces may agree). When constructing this edge one must make sure that the

only edge of the original diagram it intersects is the one that implies its existence.

This is precisely what we are accomplishing with the definition of the dual in step

2, and a nice way to see this is by drawing an edge and its dual next to each other as

in the figure below for a canonically labeled diagram.
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i
(a,b)
α

i
(a,b)
α

i
(a,b)
α−1

i
(a,b)
α−1

Fj

i
(c,d)
β−1

i
(c,d)
β−1

i
(c,d)
β

i
(c,d)
β

Fk

dual

i
(a,b)
α−1

i
(a,b)
α−1

i
(a,b)
α

i
(a,b)
α

(a, b)

i
(c,d)
β

i
(c,d)
β

i
(c,d)
β−1

i
(c,d)
β−1

(c, d)

Fj

Fk

Figure B.4. Construction of the dual edges

Note that in both diagrams the local orientation of the boundaries of faces is the

same around the vertices as can be seen in figure B.5.

i1

i2

i2i3

i3

i4

i4
i1

A

BC

D
D A

BC

i2

i2

i1
i1i4

i4

i3
i3

dual
=⇒

Figure B.5. The dual of a vertex.

Thus, this dualization is preserving the orientation of the surface, and this is

the reason why we chose to make the construction with dual faces corresponding to

decreasing sequences in the indices.

B.3 Note about non-connected diagrams. If the diagram is not connected,

then one can see that the procedure constructs the dual to each diagram for each

connected component with the same argument as above.
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B.4 Example. Consider the diagram shown in figure B.6 with faces F1, F2, F3.

i
i

j
jk

k

l
l

F2

F1
F3

Figure B.6. A diagram with one vertex of valence four.

Then the dual consists of 3 vertices with edges labeled as shown in figure B.7, and

i

ij j

k

kll

F2F1 F3

Figure B.7. The dual of the vertices of the diagram in figure B.6

for the pairings we join l → k, k → j, j → i, i → l, which gives the dual diagram

presented in figure B.8 where the vertex of the original diagram corresponds to the

only face

l→ k → j → i→ l.

ii j

jkk

l

l
F2F1 F3

Figure B.8. The dual diagram of the diagram in figure B.6

B.5 How to recover the original diagram from its dual. The same procedure

we described to construct the dual diagram from a diagram will give the original

diagram out of its dual.
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B.5.1 Proposition. The dual of the dual of a diagram is the diagram itself.

Proof. For simplicity we assume that the diagram is canonically labeled with vertices

indexed by tuples (a, b) = (vertex #, valence), where b = 1, . . . , ν and a = 1, . . . , nb

(it is understood that if nj = 0 then there are no vertices of valence j), and with the

double edges around vertex (a, b) labeled clockwise by i(a,b)1 , i
(a,b)
2 , . . . , i

(a,b)
b .

Let G be the original diagram, G′ be its dual, and G′′ be the dual of G′. As we

described above, the face dual the vertex (a, b) in G is the cycle

i
(a,b)
b → i

(a,b)
b−1 → . . .→ i

(a,b)
1 → i

(a,b)
b ,

and was labeled as face (a, b) in the dual. We will temporarily denote this face with

a prime as (a, b)′ to avoid confusion, but remark that its label is really (a, b). To

construct the dual of G′ step 1 tells us to construct one vertex for each face of G′

and label it using the labels of the faces if present. Thus, G′′ will have vertices

corresponding to vertices of G, with the same labels. Again, for the sake of clarity,

we refer to the vertex (a, b) of G′′ as (a, b)′′ to specify that it is a vertex of the double

dual.

Now we define the double edges of vertices of G′′. According to the procedure,

we label the double edges around vertex (a, b) clockwise according to the reverse

orientation of the face (a, b)′. Thus to vertex (a, b)′′ in G′′ we add b edges labeled

clockwise in the order i(a,b)1 → i
(a,b)
2 → . . . → i

(a,b)
b . This is precisely the labeling and

valence of the original vertex (a, b) of G.

Therefore, it only remains to be checked that step 2 defines the same pairings for

G′′ as the ones we have for G. Say we want to figure out what to pair the outgoing

edge i(a,b)σ in G′′ as shown in the figure.
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Fj

Fk

dual

i
(a,b)
σ

i
(a,b)
σ

i
(a,b)
σ+1

i
(a,b)
σ+1

(a, b)

i
(c,d)
τ+1

i
(c,d)
τ+1

i
(c,d)
τ

i
(c,d)
τ

(c, d)

Fj

Fk

G
G′

(a, b)G′′

dual i
(a,b)
σ+1

i
(a,b)
σ+1

i
(c,d)
τ

i
(c,d)
τ

i
(a,b)
σ

i
(a,b)
σ

i
(c,d)
τ+1

i
(c,d)
τ+1

i
(a,b)
σ

i
(a,b)
σ

i
(a,b)
σ+1

i
(a,b)
σ+1

?

Figure B.9. Construction of the dual

According to step 2 we need to find i(a,b)σ as an incoming edge in G′ with outgoing

edge say π, and then pair outgoing i(a,b)σ with the incoming label π in G′′. But by the

way we constructed G′ we see that π is no other than i(c,d)
τ+1 (see the figure), and so in

G′′ we pair outgoing i(a,b)σ with incoming i(c,d)
τ+1 . This is is precisely the same pairing as

in G, and so this completes the proof that G′′ is the same as G.

B.6 A note about the labels. If our diagrams happen to have extra labels for

the vertices, edges or the faces, then in the construction of the dual we can transfer

these labels. The same is true for colorings of vertices, edges of faces.
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Appendix C

The genus expansion for ẐN(t)

In this appendix we provide a self-contained proof of the genus expansion

1

N2
log ẐN(t) “ = ”

∑
g≥0

1

N2g
eg(t),

as a formal identity (meaning dn/dtn |t=0 agrees on both sides), where

(C.0.1) ẐN(t) :=

∫∫∫
exp {itN Tr (ABC + ACB)} dµN(A)dµN(B)dµN(C),

and

(C.0.2) eg(t) =
∑
n≥0

(−1)n

(2n)!

 number of colored triangulations
with 2n triangles on an orientable

surface of genus g up to equivalence

 t2n,

as in 2.2.6.

C.1 The partition function

By defining

ZN(t) :=

∫∫∫
exp

{
−NTr

[
1

2

(
A2 +B2 + C2

)
− it(ABC + ACB)

]}
dAdBdC,

we can write partition function ẐN(t) defined in (C.0.1) as

ẐN(t) =
ZN(t)

ZN(0)
,

since ZN(0) =
(
ZGUE
N

)3 (see 1.1.3). Rescaling all three matrices in both numerator

and denominator by 1/
√
N then gives integrals over unscaled GUE

(C.1.1) ẐN(t) =

∫∫∫
exp

{
i
t√
N

Tr [ABC + ACB]

}
dµ̃N(A)µ̃N(B)µ̃N(C),
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where µ̃N is GUE measure as defined in 1.1.1.

C.1.2 The partition function as a formal generating function. By formally

Taylor expanding the exponential in (C.1.1), and interchanging the series and integral

symbols one sees that

(C.1.3) ẐN(t)“ = ”
∑
n≥0

in
N−n/2〈(Tr [ABC + ACB])n〉

n!
tn

where

〈f〉 :=

∫∫∫
f dµ̃N(A)dµ̃N(B)dµ̃N(C)

is the the expectation with respect to the combined GUE measure, where the “ = ”

symbol means that this equality is just formal and ignores all possible issues with

convergence or interchanging of summation and integral signs.

C.2 Relation to labeled colored diagrams.

C.2.1. A tri-valent diagram with n vertices is diagram with n vertices of valence

three as defined in A.2.1. Since all the vertices have the same valence, we simplify

the labeling notation to remove mention of the vertex type. More specifically, we will

label the n vertices as in figure C.1.

1

i1 j1

j1

k1k1

i1 2

i2 j2

j2

k2k2

i2
. . . n

in jn

jn

knkn

in

Figure C.1. The labeled vertices of a tri-valent diagram.

Note that since all vertices have valence three, the pairings force the number of

edges to be even. Figure C.2 shows an example of a tri-valent diagram with four
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vertices. This diagram has two faces, given by

i1 → i1

j1 → i2 → j3 → i4 → i3 → j2 → . . .→ k1 → j1,

and so defines a map in a surface of genus 1, as described in A.3.5.

1

i1 j1

j1

k1k1

i1 2

i2 j2

j2

k2k2

i2

3

i3 j3

j3

k3k3

i3 4

i4 j4

j4

k4k4

i4

Figure C.2. Representation of a tri-valent diagram.

C.2.2. A colored tri-valent diagram is a tri-valent diagram together with an

assignment of one of the colors A, B, C to each half-edge in such a way that the

following conditions are satisfied:

• Half-edges ij of each vertex are assigned color A.

• Paired half-edges of the diagram share the same color.

• Each vertex has one half-edge of each of the three colors.

We call the collection of vertices together with the coloring of their half-edges the

coloring scheme of the vertices of the diagram.
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C.2.3. We note that given these conditions, each vertex can be colored in only one

of two ways (see figure C.3):

• The half-edge jk is colored with B and half-edge ki is colored with C. We call

a vertex colored in this way a type I vertex.

• The half-edge jk is colored with C and half-edge ki is colored with B. We call

these type of vertex a type II vertex.

i j

j

kk

i

i j

j

kk

i

Type I Type II

A A

B BC C

Figure C.3. The two types of colored tri-valent vertices.

C.2.4 Example. Figure C.4 shows all the colored tri-valent diagrams with two

vertices. The top two give maps of genus zero, while the bottom two give maps of

genus one.

C.2.5 Remark on the labels. The very rigid condition regarding half-edges ij

always being colored with color A above is cooked up so that proposition C.2.6 below

is true. In the end, this all boils down the fact that the integrals really count couplings

via Wick’s lemma A.1.1 and to how one expands (Tr [ABC + ACB])n as a polynomial

in the entries of the matrices. The fact that matrix A shows up first in both of the

matrix monomials singles matrix A in a very particular way in the proof of C.2.6.

Of course, this is just a matter of convention, and if one prefers one may restate

everything singling out a “special” color for the whole diagram and a special “half-

edge” for each vertex which plays the role of the ij edge.
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1

i1 j1

j1

k1k1

i1 2

i2 j2

j2

k2k2

i2

1

i1 j1

j1

k1k1

i1 2

i2 j2

j2

k2k2

i2

1

i1 j1

j1

k1k1

i1 2

i2 j2

j2

k2k2

i2

1

i1 j1

j1

k1k1

i1 2

i2 j2

j2

k2k2

i2

A B C

Figure C.4. The four colored tri-valent diagrams with two vertices.

C.2.6 Proposition. If n is odd, then 〈Tr [ABC + ACB]n〉 = 0. Otherwise, for n > 0

we have

〈Tr [ABC + ACB]2n〉 =
∑
F≥1


number of colored
tri-valent diagrams
with 2n vertices

and F faces

NF .

Proof. By writting

Tr [ABC + ACB] =
N∑

i,j,k=1

aijbjkcki + aijcjkbki,

we have

(Tr [ABC + ACB])n =
N∑

i1, . . . , in
j1, . . . , jn
k1, . . . , kn

=1

(ai1j1bj1k1ck1i1 + ai1j1cj1k1bk1i1)(ai2j2bj2k2 . . .
. . . (ainjnbjnkncknin + ainjncjnknbknin).
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We can shorten the notation by introducing the muti-index

σ := (i1, i2, . . . , in, j1, . . . jn, k1, . . . , kn)

and defining for p = 1, . . . , n

T I
p(σ) := aipjpbjpkpckpip ,

T II
p (σ) := aipjpcjpkpbkpip ,

to obtain

(Tr [ABC + ACB])n =
∑
σ

(T I
1(σ) + T II

1 (σ))(T I
2(σ) + T II

2 (σ)) . . . (T I
n(σ) + T II

n (σ))

where the sum runs over all indices in σ ranging from 1 to N , and the notation T I

and T II was chosen to stand for type I vertex and type II vertex as defined in (C.2.3),

which will be useful below. By expanding the product on the right we obtain

(Tr [ABC + ACB])n =
∑

q1,...qn∈{I,II}

∑
σ

T q11 (σ)T q22 (σ) . . . T qnn (σ),

and if n is odd, then T q11 (σ)T q22 (σ) . . . T qnn (σ) is a monomial in the a’s, b’s and c’s with

an odd number of entries from each matrix, and so 〈T q11 (σ)T q22 (σ) . . . T qnn (σ)〉 = 0 (by

using the substitution (a, b, c) 7→ (−a,−b,−c) in the integral). This proves the first

claim in the statement by the linearity of 〈·〉.
Regarding even powers, again using linearity we write

〈
(Tr [ABC + ACB])2n

〉
=

∑
q1,...q2n∈{I,II}

∑
σ

〈T q11 (σ)T q22 (σ) . . . T q2n2n (σ)〉 ,

and make the following identifications:

• We identify the term 〈T q11 (σ)T q22 (σ) . . . T q2n2n (σ)〉 with a collection of 2n tri-valent

vertices as in figure C.1, which have no coloring type specified to them, and

where we ignore the actual numerical values of the indices in σ coming from the

sum over σ.
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• Each vertex is colored according to the coloring scheme determined by the q’s,

so that vertex 1 is of type q1, vertex 2 is of type of type q2, and so on (see

C.2.3), where we make the convention to always color the edge ij with color A

(just as in the definition of T I
p and T II

p ).

In such a way, the outside sum in the above equation corresponds to a coloring scheme

of the 2n tri-valent vertices as defined in (C.2.2), with each coloring scheme appearing

only once.

Then, when one applies Wick’s lemma to 〈T q11 (σ)T q22 (σ) . . . T q2n2n (σ)〉, non-zero con-

tributions in the resulting sum will only come from couplings that pair the a’s with

the a’s, the b’s with the b’s and the c’s with the c’s since the matrices are indepen-

dent, i.e., the couplings that are compatible with the coloring schemes of the vertices.

To each of these couplings we can associative a unique colored tri-valent diagram as

defined above, and the coupling will contribute NF to the sum where F is the number

of faces as in appendix A. This gives the equality in the statement.

C.2.7. By combining C.2.6 and C.1.3 we obtain the formal identity

(C.2.8) ẐN(t)“ = ”1 +
∑
n≥1

(−1)n

(2n)!

∑
F≥1


number of colored
tri-valent diagrams
with 2n vertices

and F faces

NF−n

 t2n,

where we have separated the first term 1 = 〈Tr [ABC + ACB]0〉 from the others to

avoid having to specify unnatural counts for diagrams with zero vertices.

C.3 The genus expansion in terms of colored tri-valent maps

C.3.1 The associated colored tri-valent maps. As discussed in appendix A,

the connected diagrams have a particularly interesting geometric interpretation. By

embedding a connected colored tri-valent diagram in the surface it defines, and then
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collapsing the edges as described in A.3, one obtains a colored tri-valent map as we

defined in 2.2.4. Figure C.5 illustrates how the construction looks like locally, where

the bent arrow is specifying the orientation of the surface.

`
AB

C

AB

C

`
A

BC
`

i`

i`

j`

j`

k`k`

⇐⇒ ⇐⇒

Figure C.5. From a colored tri-valent map to a colored tri-valent diagram.

C.3.2 The logarithm counts connected objects. It is well known in the combi-

natorics literature, and widely used in the applications of matrix integrals to combi-

natorics, that the logarithm of an exponential generating function for labeled objects

is the formal generating function for the connected ones. In other words, one has the

formal identity

log

[∑
n=0

bn
n!
tn

]
“ = ”

∑
n=1

an
n!
tn,

where the an count only the connected objects while the bn are the counts with any

number of connected components. This statement is more like a principle than a

general theorem, because what one means by labels, by connected, and how one

“counts” can vary drastically from one application to another, and this fact makes it

virtually is impossible to write a precise and general statement. In particular, the

formal exponential series to which we want to take the logarithm on the right of

C.2.8 has as coefficients Laurent polynomials in N with integer coefficients, i.e., our

“numbers” bn are Laurent polynomials.

For the principle to hold, one must work with an exponential generating series

(with the 1/n! coefficient for the tn term), and more importantly, the decomposition
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of whatever one is counting (e.g., into connected components) must be hereditary in

the sense that each connected component of the decomposition is also an object of

the same type.

C.3.3 Proposition. One has the formal identity

log ẐN(t)“ = ”
∑
n≥1

(−1)n

(2n)!

∑
F≥1


number of colored
connected tri-valent
diagrams with 2n
vertices and F faces

NF−n

 t2n,

which is obtained from the C.2.8 by taking the logarithm on both sides.

Proof. We just need to see that the logarithm of the formal power series on the

left of C.2.8 singles out the connected diagrams. Equivalently, since log(1 + z) and

exp(z)−1 are inverses to each other as formal power series (one has to avoid constant

terms when composing formal power series, see [2]), we want to prove that if

Q2n(N) :=
∑
F≥1

(
number of colored tri-valent diagrams

with 2n vertices and F faces

)
NF−n,

and

P2n(N) :=
∑
F≥1

(
number of colored tri-valent connected
diagrams with 2n vertices and F faces

)
NF−n,

then

(C.3.4) exp

[∑
n≥1

(−1)n

(2n)!
P2n(N)t2n

]
− 1“ = ”

∑
n≥1

(−1)n

(2n)!
Q2n(N)t2n

as formal power series.

Let p(2n,F ) be the coefficients of P2n = P2n(N), so that

P2n =
∑
F≥0

p(2n,F )N
F−n.

If we write

P2nP2m =

(∑
F1≥1

p(2n,F1)N
F1−n

)(∑
F2≥1

p(2m,F2)N
F2−m

)

=
∑
F≥1

( ∑
F1+F2=F

p(2n,F1)p(2m,F2)

)
NF−(n+m),
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we can interpret the coefficient
∑

F1+F2=F p(2n,F1)p(2m,F2) as the number of labeled

colored tri-valent diagrams with F faces and precisely two 2 connected components,

one with 2n vertices and another with 2m vertices, with the extra restriction, say,

that we use 1, 2, . . . , 2n for the labels of the vertices of the first connected component,

and we use 2n + 1, 2n + 2, . . . , 2(n + m) for the labels for the vertices in the second

connected component (here we are using the minimal labels for the tri-valent diagrams

discussed in C.3.1). We emphasize the fact that
∑

F1+F2=F p(2n,F1)p(2m,F2) is not the

number of diagrams with F faces and 2n+ 2m vertices and exactly two components,

since we are not allowing the vertices of the components to have arbitrary labels from

the set {1, . . . , 2n+ 2m}.
Similarly, for all k ≥ 1 we have

P2n1P2n2 . . . P2nk =
∑
F≥0

( ∑
F1+F2+...+Fk=F

p(2n1,F1) . . . p(2nk,Fk)

)
NF−∑ni

where the coefficient of NF−∑ni is the number of labeled diagrams with precisely k

components, 2
∑
ni vertices, and F faces, with one component with 2n1 vertices with

labels 1, . . . , 2n1, another component with 2n2 vertices and labels, 2n1 +1, . . . , 2(n1 +

n2), and so on.

To remove the condition on the labels for each component coming from a particular

set, and also to remove the implicit ordering we are imposing on the components, we

sum over the partitions of the labels for the vertices to get∑
{1,...,2n}=S1tS2...tSk
with |Si|6=0 and even

P|S1|P|S2| . . . P|Sk| =
∑
F≥0

p
(k)
(2n,F )N

F−n

where p(k)
(2n,F ) is the number of tri-valent diagrams with 2n vertices, F faces, and ex-

actly k connected components, and where the sum is taken over all partitions of the

set {1, . . . , 2n} into k non-empty sets S1, . . . , Sk, each with an even number of ele-

ments. The sets Si specify the labels of the vertices that are used in the corresponding

connected component.
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Finally, summing over k we obtain the following relation between the Q’s and the

P ’s ∑
k≥1

{1,...,2n}=S1tS2...tSk
with |Si|6=0 and even

P|S1|P|S2| . . . P|Sk| = Q2n.

We now use the exponential formula, a formal identity for the exponential of an

exponential generating function (see for example [2]), which states that for ai in any

commutative ring one has

exp

[∑
n=1

an
n!
tn

]
“ = ”

∑
n=0

bn
n!
tn

where b0 = 1 and for n ≥ 1 the b’s are given by

bn =
∑
k≥1

{1,...,n}=S1tS2...tSk
with Si 6=∅

a|S1|a|S2| . . . a|Sk|

We apply this with an = 0 if n is odd, and a2n = (−1)nP2n, which gives the

identity C.3.4 and concludes the proof.

C.3.5. One can expand the first terms in the exponential formula above obtaining

Q2(N) = P2(N)

Q4(N) = P4(N) + 3P2(N)2

Q6(N) = P6(N) + 15P2(N)3 + 15P2(N)P4(N)

...

One can also use an alternate and closed formula for the bn given by

bn = Bn(a1, a2, . . . , an)
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where Bn is the n-th complete Bell polynomial.

C.3.6 The genus expansion in terms of colored tri-valent diagrams. If we

now use Euler’s formula for connected tri-valent diagrams with 2n vertices we obtain

F − n = 2− 2g,

and so we can write the formal identity for log ẐN(t) in proposition C.3.3 as

log ẐN(t)“ = ”
∑
n≥1

(−1)n

(2n)!

∑
g≥0


number of colored

connected tri-valent
diagrams with 2n
vertices and genus g

N2−2g

 t2n.

Finally, dividing by N2 and formally interchanging the two summations we obtain

the so called genus expansion

1

N2
log ẐN(t)“ = ”

∑
g≥0

1

N2g
eg(t),

where

eg(t) :=
∑
n≥1

(−1)n

(2n)!


number of colored

connected tri-valent
diagrams with 2n
vertices and genus g

 t2n,

is the exponential generating function counting tri-valent colored diagrams of genus

g.

C.4 Colored Triangulations.

C.4.1. By a triangulation of a surface we will mean a graph embedded in a surface

in such a way that its complement is a union of simply connected sets (discs), and

where all these discs have three edges in their boundary. These discs are the triangles

of the triangulation. For example, figure C.6 shows a triangulation of the sphere with

4 triangles.
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Figure C.6. Triangulation of a sphere.

A colored triangulation with 2n triangles on an orientable surface of genus

g is a triangulation of the surface with 2n labeled triangles 1, 2, . . . , 2n together with:

1. A coloring of each edge of the 1-skeleton with one of the three colors A,B, C in

such a way that each triangle has one edge of one of the three colors.

2. A fixed orientation of the surface.

As we have mentioned before, the data of the orientation of the surface is important

to gave a well defined connection with maps.

C.4.2 Example. Figure C.7 shows a colored triangulation of a sphere with two

triangles. The orientation on the surface is specified by the arrow which determines

what clockwise means in triangle 1.

1

A

B
C 2

Figure C.7. A colored triangulation of a sphere with two triangles.

C.4.3 Type I and type II triangles. Note that the above conditions imply that

the edges of each triangle can be colored in only one of two ways:
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• The coloring order of the edges is ABC when one follows them in the clockwise

direction (induced from the surface on each triangle). We call these type I

triangles.

• The coloring order of the edges is ACB when one follows them in the clockwise

direction. We call these type II triangles.

C.4.4 Example. On the example C.4.2 triangle 1 is a Type I triangle, and triangle

2 is a Type II triangle. If we reverse the orientationof the surface, then the types of

the triangles get reversed too.

C.4.5 Duality. Using the construction of the dual of a diagram from appendix B,

one can see that these colored triangulations are precisely the duals of colored tri-

valent diagrams (or maps) as we defined above. In particular, if we define equivalence

of colored triangulations to agree with the equivalence of the dual maps, which in the

end corresponds to equality of the diagrams, we obtain the following version of the

genus expansion:

C.4.6 The genus expansion in terms of colored triangulations.

1

N2
log ẐN(t)“ = ”

∑
g≥0

1

N2g
eg(t),

where

eg(t) :=
∑
n≥0

(−1)n

(2n)!


number of colored
triangulations with
2n triangles on a
surface of genus g
up to equivalence

 t2n,

where two triangulations are equivalent if there is an orientation preserving home-

omorphism of the surface that takes vertices to vertices and edges to edges that is

compatible with the colors and the labels.
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