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Surface: An irreducible, smooth algebraic surface in some projective space
over C, or some open subset of such. (Hartshorne: Any complete (i.e. uni-
versally closed, the equivalent to compact according to Mumford Red Book
I.9) nonsingular algebraic variety of dim 2 over C is projective...smoothness is
important!)

Curve on a surface S: A closed, reduced, irreducible 1-dimensional subva-
riety of S.

Divisor on S: An expression of the form∑
C curve in S

ncC

where nc ∈ Z are almost all zero.

The divisor coming from a rational function: f ∈ K(S)− 0:

div (f) =
∑

C curve in S

ordC(f)C

where ordC(f) is the valuation of f in the discrete valuation ring OS,C .

Analogy: Think of functions of a complex variable. If f(z) = z3/(z− i)2, then
we would write

div (f) = 3(0)− 2(i).

What the valuation generalizes if the following: For any meromorphic function
f(z) and any a we have

f(z) = (z − a)ng(z)

where n ∈ Z and g(z) is analytic and non-zero. Then orda(f) = n. Note: z − a
is the generator of the maximal ideal in the local ring, and g(z) is a unit.

Example: In A2
x.y we have that f = x2/y has div (f) = 2Lx − Ly where Lx is

the line x = 0 and Ly is the line y = 0.
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Principal Divisors: Divisors of the form div (f) are called principal. They
for a subgroup of the group Div(S) of all divisors because div (f1f2) = div (f1)+
div (f2).

Note: Every divisor is locally principal! (because of smoothness). But not
every divisor is principal.

Example: Let L be the line x0 = 0 in P2
x0,x1,x2

. Then L is not principal because
x0 is not a function on P2! However, on the opens Ui = {xi 6= 0} we have

L |Ui
= div

(
x0
xi

)
.

Linear Equivalence Two divisors D1 and D2 are said to be linearly equiva-
lent if there is an f with

div (f) = D1 −D2(
div

(
1

f

)
= D2 −D1

)
Example: Any curve of degree d in P2 is linearly equivalent to dL where L is
a line.
Reason. Let C = Z(F ) where F is a homogeneous polynomial of degree d, and
let L = Z(xo). Note that F /∈ K(S), but F/xd0 is! Moreover,

div

(
F

xd0

)
= C − dL.

Example: Any two curves in A2 are linearly equivalent.

(if Ci = Z(fi), then C1 − C2 = div
(
f1
f2

)
)

Picard group of S: Pic(S) = Div(S)/{principal divisors}

Examples:

• Pic(A2) = 0

• Pic(P2) = Z[L] where L is the class of a line.

• If S′ is the blow-up of S at a point, then Pic(S′) = Pic(S) ⊕ Z[E] where
E is the exceptional divisor.
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Intersections of Divisors: Let D1 and D2 be divisors on S. We say that D1

and D2 are in general position if their supports have no common components
where

Supp(
∑

ncC) =
⋃
{C | nc 6= 0}.

Fact: If this is the case, then Supp(D1)∩Supp(D2) will consist of finitely many
points (being closed and of dim 0).

Say, D1, D2 are effective (≥ 0) and in general position. We define

D1 ·D2 =
∑

p∈Supp(D1)∩Supp(D2)

(D1, D2)p

where
(D1, D2)p = dimk (OS,p/(f1, f2))

where the fi are local equations for the Di around p. This is called the local
intersection multiplicity at p.

D1

D2

p

(D1, D2)p = 1

D1

D2

p

(D1, D2)p > 1

p D2

D1

(D1, D2)p > 1

We extend this definition to non-effective divisors by bilinearity (any divisor can
be written on the form D = D′ −D′′ with D′, D′′ ≥ 0).

Then we extend it to divisors that are not in general position by defining

D1 ·D2 = D′1 ·D′2

where D′i is linearly equivalent to Di and D′1, D
′
2 are in general position.

This is well defined, but it is painful to check, and so we end up with a product
which

• is bilinear and symmetric

• is independent of linear equivalence representatives.

For all the details, see Shararevich’s Basic Algebraic Geometry chapter IV .
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Note for the experts There is a slick way to define this intersection by
noting that for any two line bundles F1,F2 on S, the expression

(F1,F2) = χ(OS)− χ(F−11 )− χ(F−12 ) + χ(F1 ⊗F2)

is bilinear (with ⊗ playing the role of the sum!). One applies this with F1 =
OS(D1) and F2 = OS(D2), and then it al boils down to proving that if C and
D are two irreducible curves in general position, then

(OS(C),OS(D)) = C ·D.

This is proved using the fact that in this case there exact sequence of sheaves

0→ OS(−C −D)→ OS(C)⊕OS(D)→ OS → OC∩D → 0

(note that OC∩D = OS/(OS(−C) + OS(−D))), and the fact that the stalk of
OC∩D at a point of their intersection is precisely OS,p/(f1, f2) which is what we
used to define the local intersection number (C,D)p above.

Note: This approach takes care of the independence of the intersection with
linear equivalence because if D and D′ are linearly equivalent, then OS(D) =
OS(D′)!

For a details see Beauville’s Complex Algebraic Surfaces.

Example Let Ci be any two curve of degree di in P2. Then

C1 · C2 = (d1L) · (d2L)

(bilinearity) = (d1d2)L · L
(L′ some other line) = (d1d2)L · L′

= d1d2

which is Bezout’s theorem!

Example A negative self intersection:

Let S be a smooth surface of degree d in P3 defined by F = 0, and let L be a
line contained in S.

Let E be the intersection of a plane P2 containing L with S. Then

E = L+ C

where C is some curve in P2 of degree d− 1. Multiplying by L we get

E · L = (L+ C) · L
= L · L+ C · L
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but E · L = 1 because one can move the plane that cuts E so that it does not
contain L, and then the intersection of the plane and the line is just one point.
Also, C · L = d− 1 since C has degree d− 1. This shows that

L2 = L · L = 2− d

which is negative if d ≥ 3!

For example, any line on a smooth cubic surface in P3 is a −1-curve.

Pull-back of a divisor Let S, S′ be smooth surfaces, D be a divisor of S,
and π : S′ → S a morphism. We define π∗D, the pullback of D to S′ as follows:

For any C in the support of D, let f be a local equation. Define

π∗C = div (π∗f) = div (f ◦ π)

and extend this to D by linearity.

Note: There is an issue here with f being only local, and what should be
understood here from the above equation, is that it is the way to find the
coefficients of the components of π−1(C) = Supp π∗C.

Example: The self intersection of and exceptional divisor:

Let S′ be the blow-up of S at a point p, and let E be the exceptional divisor
(a curve). Let C be a smooth curve going through p with multiplicity 1 (i.e.
smooth at p). We have

π∗C = C ′ + E

where C ′ is the strict transform of C. Thus, multiplying by E we get

E · π∗C = E · C ′ + E2,

but E · C ′ = 1 (the point corresponding to the tangent line of C at p), and

E · π∗C = 0

because we can move C away from p (this requires S to be smooth...one can
always move a divisor away from finitely many points. Shafarevich III 1.3
Theorem 1) to say C ≡ D, and then

E · π∗C = E · π ∗D = 0

because π∗C ≡ π∗D and π∗D does not intersect E. This implies that

E2 = −1.
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Some comments on negative self intersections When we have an effec-
tive curve with C2 < 0, this in particular implies that we cannot ”move” the
curve in the sense that there is no effective (≥ 0) divisor that is equivalent to it.
This is because if we could find a divisor D ≥ 0 with C ≡ D and C /∈ Supp(D),
then C2 = C ·D ≥ 0 since C ≥ 0 too by bilinearity.

Combining this with the statement from Shafarevich that we used above stating
that one can always move a divisor away from finitely many points (Shafarevich
III 1.3 Theorem 1), we see that if C2 < 0, then even though we can always move
C away from a point, every time we do so we need to use negative coefficients,
and moreover that any D with C ≡ D not only has negative coefficients, but it
also always has to intersect C.

A cool theorem of Castelnuovo A curve E on a smooth surface S′ can be
contracted to point on a smooth surface S (ie, a map π : S′ → S with S smooth

and π : S′ − E
∼=−→ S − {p}) if and only if E ∼= P1 and E2 = −1.

Example: Hirzebruch surfaces:

Fn is the surface in P2
x×P1

t defined by x1t
n
1 = x2t

n
2 . They are all ruled surfaces

Fn
↓
P1

(the fibers are all isomorphic to P1). Moreover, any ruled surface over P1 is
isomorphic to one of these because

Fn = P(OP1 ⊕OP1(n))

and using the fact that we know how rank 2 vector bundles over P1 look like.

• F0 = P1 × P1

• F1 = BlptP2

• Pic(Fn) = Z[B]⊕ Z[F ] where F is the class of a fiber, and B is the class
of the unique irreducible curve in Fn with negative self intersection.

• F 2 = 0, B2 = −n, B · F = 1

In the picture H is the pullback of a line. One has

H = B + F
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The Canonical Divisor KS=the canonical divisor on S= the divisor of a
2-form on S.

This is well defined only up to linear equivalence!

Example: Let S = P2
X,Y,Z and U = A2

x,y = {Z 6= 0} where x = X/Z, y = Y/Z.
Let ω be the 2-form that on U is give by

ω = dx ∧ dy.

Then div (ω) |U= 0. To look at what is the coefficient of L = {Z = 0} go to
another chart, say {Y 6= 0} with coordinates u = X/Y = x/y and v = Z/Y =
1/y where L has equation v = 0. Then

ω = d
(u
v

)
∧ d
(

1

v

)
= − 1

v3
du ∧ dv

and so ordH(ω) = −3 which implies that

KP2 = −3L.

The adjunction formula If C is a smooth curve on a surface S, then the dif-
ferentials of C are related to the differential 2-forms on S by (ωS : the canonical
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sheaf on S)
(ωS ⊗OS(C)) |C= OC(KC)

which we may write as
OS(KS + C) |C= Ω1

C

since ωS = O(KS) and Ω1
C = OC(KC).

Taking degrees this gives another (weaker) form of adjunction:

KS · C + C2 = 2g(C)− 2

For C not necessarily smooth, one has

KS · C + C2 = KS ·D +D2 = 2g(D)− 2

where D is a smooth curve that is linearly equivalent to C. As long as we know
the existence of such a C, we can conclude that

KS · C + C2 ≥ −2,

which we will use later on. However, by Hartshorne V.ex.1.3 and III.ex.5.3 we
do not need to find a smooth D equivalent to C to show that

KS · C + C2 ≥ −2

independent of whether C is smooth or not.

If C is not smooth, one can also prove that that

KS · C + C2 = (2g(C̃)− 2) +
∑

ri(ri − 1)

where g(C̃) is the geometric genus of C (the genus of of its desingularization, or
normalization), and the ri are the multiplicities of all the infinitely near points
lying over the singular points of C. We will discuss and explain this in detail
below.

Example: Let L be the class of a line in P2. Then using adjunction with
C = L ∼= P1 we get

KP3 · L+ 1 = −2

and so KP2 · L = −3. But KS = aL for some a since Pic(P2) = Z[L], and so

KP2 = −3L.

Example: Let C be a smooth curve of degree d in P2. Then C ≡ dL and
using adjunction we get

−3L · dL+ d2L · L = 2g(C)− 2

and so

g(C) =
(d− 1)(d− 2)

2
the degree genus formula!
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Invariance under pullbacks Let f : S′ → S be a generically finite morphism
of degree d, and let D1, D2 be divisors in . Then

f∗D1 · f∗D2 = d(D1 ·D2).

For the proof the idea is to move D1 and D2 so that they intersect transversally
and their intersections occur at points of S where there is no branching of f , so
there are d distinct preimages. Then f∗D1 and f∗D2 intersect transversally at
each of these preimages and so the number of intersection points gets multiplied
by d. The fact that you can always move the Di like this is a little delicate and
uses a big theorem by Serre (see Beauville p.4.)

Example The Veronese surface in P5 contains no lines:

The Veronese surface S is the image of σ : P2 → P5 by the linear system of
conics, and so its hyperplane sections H are conics all conics. Note that all
hyperplane sections are linearly equivalent since we can move the plane. If L
were a line contained in S, then

1 = H · L

because we can move the hyperplane, and any hyperplane that does not contain
L intersects it at one point. This makes no sense because if we pull this back
to P2, then

1 = σ∗H · σ∗L = 2l · σ∗L = 2(l · σ∗L)

where l is the class of a line in P2.

The canonical divisor of a Blow-up If S′
π−→ S is the blow-up of S at a

point, then
KS′ = π∗KS + E.

This can be proved with local equations (see Bueauville p. 13).

Resolution of Singularities Let C be a curve which has a singularity at p
of order r (if f is a local equation of C around p, then f ∈ mrS,p but f /∈ mr+1

S,p ),

and let S′
π−→ S be the blow up of S at p. Then one can prove (again, using

local equations) that
π∗C = C ′ + rE

where C ′ is the strict transform of C and E is the exceptional curve.

Moreover, one has

C ′ · E = (π∗C − rE) · E
= π∗C · E + r

= r
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since we can move C away from p (because of smoothness of S!).

But then using KS′ = π∗KS + E one has

C ′ ·KS′ = C ′ · (π∗KS + E)

= C ′ · π∗KS + r

and

C ′ · C ′ = (π∗C − rE) · (π∗C − rE)

= π∗C · π∗C − 2rπ∗C · E − r2

= C · C − r2

where the equality π∗C · π∗C = C ·C follows from the fact that π is generically
of degree 1. We conclude that

C ′ · C ′ + C ′ ·KS′ = C · C + C ·KS − r(r − 1).

This proves that the quantity

C2 + C ·K

is decreasing on the strict transforms of the curve as we blow up the singular
points of C on the surface, but by adjunction (the strong version that we can
use on singular curves) we always have

C2 + C ·K ≥ −2.

Thus, the quantities C2 + C ·K must eventually stabilize, and so the r’s must
eventually all become 1. This just means that eventually the curve is smooth!

(taken from Shafarevich’s book on surfaces in the Encyclopedia of Mathematics
series). See also Hartshorne V.3.7 and 3.8.

The genus of the desingularization The proof above gives the extra state-
ment: Let C̃ be the smooth curve you obtain at the end of the above process,
S̃ be the smooth surface where it lives, and let ri be the multiplicities of all
the points that got blown up in the resolution (these points lie on intermediate
surfaces, and project down to the singular points of C). Then we have

C2 +KS · C = C̃2 +KS̃ · C̃ +
∑

ri(ri − 1)

(we had referred before to these ri as the multiplicities of all the infinitely near

points lying over the singular points of C). Now, by adjunction on S̃ and by

the smoothness of S̃ we obtain

C2 +KS · C = 2g(C̃)− 2 +
∑

ri(ri − 1)

from which you can get the genus of the desingularization.

Note that to find the ri you have to go through the whole desingularization
process. In the case where the singular points of C are ordinary (a point p of
multiplicity r is ordinary if C has r distinct tangent lies at p), then the sum
ranges only over the multiplicities of the singular points of C.
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The general degree-genus formula If we start with a plane curve C of
degree d, then we know that C2 +KS ·C = (d−1)(d−2)/2 and using the above
formula we find that the geometric genus of a curve of degree d in P2 is given
by

g =
(d− 1)(d− 2)

2
−
∑ ri(ri − 1)

2
.

This is the most general form of the degree-genus formula for plane curves.

Again, in the case when the singularities are ordinary, the only ri that show up
are the multiplicities of the singular points of C. For conics all singularities are
ordinary, and for cubics only nodes are.
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