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There are exactly 2 lines intersecting four sufficiently general lines in 3-space.
In this project you will prove this statement, and in the process understand pre-
cisely what sufficiently general means, and learn about 3-dimensional projective
space, which is where the statement is true. This is one of the simplest and nicest
counts in the field of Enumerative Geometry, part of Algebraic Geometry.

1 Projective Spaces

The n-dimensional projective space RPn over the real numbers is defined the be
the set Rn+1 − {(0, . . . , 0)} modulo the equivalence relation (x0, x1, . . . , xn) ∼
(λx0, λx1, . . . , λxn) for λ ∈ R×. We denote the points in this space using pro-
jective coordinates [x0 : x1 : . . . : xn], which represent the equivalence class of
the point (x0, x1, . . . , xn), where of course x0, x1, . . . , xn are not all zero. Note
that RPn can be naturally identified with the set of lines in Rn+1 through the
origin.

One important property we will be using often about the projective space
RPn is that it is covered by some natural copies of Rn. Explicitly, the sets Ui for
i = 0, 1, . . . , n of points of RPn with projective coordinate xi 6= 0 are in natural
bijection with Rn. We call these Ui affine charts. The explicit bijection is given
by

Ui → Rn

[x0 : x1 : . . . : xn] 7→
(
x0
xi
,
x1
xi
, . . . ,

x̂i
xi
, . . . ,

xn
xi

)
.

Exercise 1. Prove this statement, and show that the sets Ui are open with the
quotient topology on RPn coming from Rn+1. (Optional) Moreover, show that
the map above is a homeomorphism.

Exercise 2. Prove that the complement in RPn of each Ui is naturally a copy
of RPn−1. This is why we say that RP1 is R with an extra point “at infinity”
(the extra point being RP0), and RP2 is R2 with an extra line “at infinity” (an
RP1), and so on.
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2 Lines in RP3

Let Π be a 2-dimensional subspace of R4. We call the image of Π−{(0, 0, 0, 0)}
in the quotient space RP3 a line (remember that 1-dimensional subspaces of R4

correspond to points in RP3). For example, the line defined by x0 = x1 = 0 is
the set of points of the form [0 : 0 : x2 : x3] and is clearly isomorphic to RP1.

Similarly, we call the set of points coming from a 3-dimensional subspace of
R4 a plane.

Exercise 3. Show that a line in RP3 that does not lie in the complement of
U0 does in fact look like a line in the usual sense when you identify U0 with R3

with the map described above (use x, y, z as coordinates of R3 where x = x1/x0,
y = x2/x0 and z = x3/x0). Moreover, show that any line in R3 comes from a
line in RP3 when you identify R3 with U0.

Exercise 4. A change of coordinates in RPn is given by a map induced by a
linear isomorphism Rn+1 → Rn+1 (a change of basis of the vector space Rn+1).
Explain why changes of coordinates take lines to lines, and why one can take
any line in RP3 onto any other line by a linear change of coordinates. Conclude
that they are all copies of RP1 lying inside RP3. Do the same for planes, and
conclude they are all isomorphic to RP2.

Exercise 5. Show that if two lines in RP3 lie on a plane, then they necessarily
intersect. In particular, conclude that any two lines in RP2 intersect. What is
the intersection point of the lines x = 1 and x = 2 in R2 when viewed inside
RP2?

Exercise 6. Show that any set of three non-intersecting lines L1, L2, L3 in RP3

can be taken by a change of coordinates to any other set of non-intersecting
lines.

Exercise 7. Let p = [p0 : p1 : p2 : p3] and p = [q0 : q1 : q2 : q3] be any two
points in RP3. Show that there is a unique line in going through these two
points, and that it is the image of the map

RP1 → RP3

[s : t] 7→ [sp0 + tq0 : . . . : sp3 + tq3].

We call this the parametrization of the line through the points p and q, and we
informally write it as sp+ tq for [s : t] ∈ RP1.

3 The Segre Embedding

There is a very nice way to realize the cartesian product RP1×RP1 as a surface
in RP3, and this fact and its generalizations are of great importance in algebraic
geometry. The explicit map in this situation is defined by

φ : RP1 × RP1 → RP3

[s0 : s1]× [t0 : t1] 7→ [s0t0 : s0t1 : s1t0 : s1t1]
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Exercise 8. Show that φ is a bijection.

Exercise 9. Show that the image S of φ is precisely the set of points of RP3

that satisfy the equation x0x3 − x1x2 = 0. We call this surface S a quadric
because it is defined by a homogeneous equation of degree two. Draw a picture
of how S looks like inside U0.

Exercise 10. Show that the image of the sets p × RP1 under φ are all lines.
We say that the quadric surface S is ruled because the lines sweep the whole
surface. Similarly, show that the image of the sets RP1 × q for varying q is
another ruling of the quadric. Explain why any two lines of the same ruling
do not intersect, and show that any two lines of different rulings intersect at
precisely one point. Show these lines in the picture in U0.

Exercise. (Optional) Show that by a change of coordinates on can take S to
the surface defined by y20 +y21 = y22 +y23 in RP3 in the new projective coordinates
[y0, y1, y2, y3]. Draw a picture of this transformed S in the new U0. The two
rulings of S are a little easier to see in the pictures you can draw by hand.

Exercise 11. Show that any line in RP3 either is contained in S or else it
intersects it at 0,1 or 2 points. Explain why, if we allowed the variables to be in
C, and kept all the definitions the same, then the lines of CP3 would either be
contained in the surface S or would intersect S at exactly two points counting
multiplicities (Hint: use exercise 7).

The above is a very simple case of Bezout’s theorem, which tells you the
number of intersection points of two projective varieties you expect to intersect
at finitely many points. Bezout’s theorem is only true over algebraically closed
fields, which is why you only get an upper bound in exercise 11 when working
over R.

We will need one more fact about the surface S that we cannot prove with
elementary means because it relies on the structure of S as an algebraic variety,
and in particular on properties of its tangent planes. We state the fact we need
below.

Fact 12. There are exactly two lines in S through any point p on S.

Note that by exercise 10 we know precisely which these two lines are! The
fact states that there are no other lines in S through p.

Sketch of proof of fact 12. Any line contained in S going through a point p
must be contained in the tangent plane to S at p. Thus, the intersection of the
tangent plane to S at p with S contains the two lines of the two rulings going
through p. But, any general plane in RP3 intersects S along a conic, and this
implies that the intersection of the tangent plane with S must be precisely the
union of the two lines since this is already a conic. This proves there are no
more lines contained in S through p.
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4 Four lines in space

Exercise 13. Show that given three non-intersecting lines L1, L2, L3 in RP3,
the union of the lines in RP3 that intersect the three lines is a quadric surface
in RP3. Hint: Use a linear transformation to take the lines to three lines in one
ruling of S, and use exercises 10 and 11.

We now have all the required background to state and prove the statement!

Exercise 14. Prove that there are at most two lines intersecting a fixed set of
4 non-intersecting lines in R3 that do not all lie on a quadric surface by showing
the statement for RP3. Hint: Use fact 12.

Exercise 15. Prove the nice exact statement that is only true over C: There
are exactly two lines (counting multiplicities) intersecting a fixed set of 4 non-
intersecting lines in CP3 that do not all lie on a quadric surface. Explain what
the “counting multiplicities” means precisely.
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