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por

Enrique Acosta Jaramillo

Director: Alf Onshuus
Codirector: Ronald van Luijk

Para optar al T́ıtulo de
Magister en Matemáticas
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Universidad de los Andes

Julio 2007



A Xavier Caicedo.

ii



Contents

INTRODUCTION 1

I RATIONAL TETRAHEDRA 5

1.1 The Variety Defined by the Equation . . . . . . . . . . . . . . . . . . . . . 5

1.2 Case 5 of Buchholz’s Classification . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Case 6 of Buchholz’s Classification . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Rational Solutions Corresponding to Realizable Tetrahedra . . . . . . . . . 16

1.5 The General Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.6 Heron Tetrahedra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

II FIBRATIONS AND GENERIC FIBRES 22

2.1 Varieties and Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Fibred Products, Fibres and Generic Fibres . . . . . . . . . . . . . . . . . 23

2.3 Chapter 1 Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

III K3 SURFACES 36

A CURVES OF THE FORM Y 2 = A+BX + CX2 +DX3 + EX4 41

B TRANSFORMATION OF CASE 6 43

C SOME RESULTS FROM COMMUTATIVE ALGEBRA 45

iii



Introduction

In this thesis we will study some arithmetic problems related to the edges and volume

of a tetrahedron. We will call a tetrahedron with rational edges and volume a rational

tetrahedron. The equation relating the volume V of a tetrahedron and the lengths of its

edges a, b, c, d, e, f is given by

(12V )2 = (a2 + d2)(−a2d2 + b2e2 + c2f2) +

(b2 + e2)(a2d2 − b2e2 + c2f2) + (1)

(c2 + f2)(a2d2 + b2e2 − c2f2)−

a2b2c2 − a2e2f2 − b2d2f2 − c2d2e2,

where the edges are arranged in the configuration shown below.

Figure 1. The General Tetrahedron

This equation has been rediscovered several times (see [Chi04] for references, and

[Buc92] for a proof) and its solutions in integers or rational numbers have been studied

extensively. We know that (1) does have integer solutions (for example (a, b, c, d, e, f, V ) =

(7, 6, 4, 2, 4, 5, 6)), and even more, that it has infinitely many solutions. The amount of

variables, however, makes it a complicated problem to be studied in full generality. As

a result, only partial results have been obtained regarding the nature of the rational and

integer solutions. It has been noted that not every positive real solution of (1) corresponds
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to a tetrahedron, though of course every tetrahedron corresponds to a solution. In section

1.4 we will comment on what conditions guarantee that a positive solution corresponds to

an actual tetrahedron.

One of the first things that one notices about equation (1) is that if (a, b, c, d, e, f, V ) is

a rational solution, then so is (ka, kb, kc, kd, ke, kf, k3V ) for any k ∈ Q. That is, equation

(1) is homogeneous in some sense. Therefore, given any rational solution one can always

find an integer one by scaling it. In this sense, nothing is lost if one seeks for rational

solutions instead of integer ones when the interest is to find integer solutions. More

importantly, however, this implies that we only need to consider solutions up to scaling,

and we will do so from now on. We will identify all the solutions that can be scaled to

one another, considering them as one solution.

The approach taken to study rational tetrahedra in [Buc92] and [Chi04] is to reduce

the number of variables of (1) by equating some of the edges. Buchholz [Buc92] classified

partially the cases resulting from this approach and Catherine Chisholm completed this

classification in her Masters thesis [Chi04]. The idea is to classify the cases resulting

from equating the edges of the tetrahedron according to the number of different edge

lengths the tetrahedron can have. They call “n-parameter tetrahedra” the families of

tetrahedra that can have at most n different edge lengths. Classifying in this manner

leads to equations with the same number of variables, though the way of equating the

edges may lead to essentially different equations. This leads them to consider sub-cases

for each n-parameter family.

For example, there is only one sub-case to consider regarding 1-parameter tetrahedra

given by a = b = c = d = e = f . There are no 1-parameter rational tetrahedra as there are

no rational solutions to the equation (12V )2 = 2a6, since
√

2 is not rational. Regarding the

situation with 2-parameter tetrahedra, there are 5 sub-cases in total and Buchholz in his

article [Buc92] shows that only one of these sub-cases gives rational tetrahedra. He shows

there is an infinity of rational tetrahedra for this sub-case and gives a parametrization for

all rational solutions of the resulting equation.

In this thesis we will study some of the sub-cases regarding 3-parameter tetrahedra.

There are ten sub-cases in total. We will refer to these sub-cases as “cases” from now on-

wards. Catherine Chisholm’s results regarding these cases are summarized in the following

table.
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Case Description No. of rational solutions

1 a = b = c = d 0

2 a = c = d = f ∞
3 a = b = c, d = e 0

4 a = d = f , b = c 0

5 a = d = f , b = e ∞
6 a = d, b = e, c = f ∞
7 a = e, b = f , c = d 0

8 a = b, d = e = f ∞
9 a = d, b = f , c = e ∞

10 a = e, b = c, d = f 0

For cases 2 and 8 there is a complete description of all rational solutions of the resulting

equation given in parametric form. It is unknown whether the solutions described for case

9 exhaust all the rational solutions, although they probably do not. In Chapter 1 we

will find more rational solutions for cases 5 and 6 showing that the solutions exhibited in

[Chi04] do not exhaust all the solutions.

More importantly, we will take a look at the situation regarding “3-parameter” tetra-

hedra in a geometric context by using concepts from algebraic geometry. In particular,

we will show how each of the equations resulting from equating the variables can be seen

as the defining equations of projective surfaces in some weighted projective space (so in

reality the term “3-parameter” should be replaced by two-dimensional).

As a result, the way to discover rational solutions will be greatly clarified, and we will

show a way to use the infinite family of rational tetrahedra that are known for cases 5

and 6 to generate even more solutions of the equation. This will culminate with theorems

1.2.5 and 1.3.1 where we will show that the set of rational points is Zariski dense in the

surfaces obtained from cases 5 and 6. The results will depend heavily on the fact that we

are working with surfaces and that we can view these surfaces as families of elliptic curves.

The way the results from Chapter 1 were obtained depended heavily on intuition arising

from the use of the concept of generic fibre of a morphism of varieties. Chapter 2 will be

devoted to discussing this concept in the language of scheme theory, focusing primarily on

the particular case that will be of use to analyse the situations encountered in Chapter

1. This will culminate in section 2.3 where the arithmetic problem and the geometric

setting presented in Chapter 1 will be analysed once more, hopefully giving insight to the
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ideas that led to the results obtained in Chapter 1. Finally, in Chapter 3 we will prove

some general propeties of smooth surfaces defined by equations similar to those related to

“3-parameter” tetrahedra (which, however, are not smooth). In particular, we will prove

that these smooth surfaces are K3 surfaces.

I would like to thank Professor Ronald van Luijk for his help with this thesis. It would

have been impossible for me to create it without his guidance, support, and overwhelming

enthusiasm. Thank you Ronald!
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Chapter I

RATIONAL TETRAHEDRA

1.1 The Variety Defined by the Equation

Following [Chi04], and as explained in the introduction, we will describe a tetrahedron by

specifying the lengths of its edges a, b, c, d, e, f which are to be arranged in the manner

depicted in Figure 1.

The focus of this thesis will be on tetrahedra with rational sides and volume. Accord-

ingly, we define the following.

1.1.1 Definition. A rational tetrahedron is a tetrahedron with rational sides and volume.

In section 1.4 we will comment why not every positive real solution of the equation

relating the volume and edges of a tetrahedron given in (1) corresponds to a tetrahedron.

For now we will focus on finding rational solutions to the equation without worrying

whether or not a solution corresponds to a tetrahedron.

As was mentioned in the introduction, we identify any two solutions of (1) that can

be scaled to one another. In the language of algebraic geometry one can accomplish

this identification by considering (1) as the defining equation of an algebraic variety X

over a field K in weighted projective1 space PK(1, 1, 1, 1, 1, 1, 3), defined as the set K7−
{(0, 0, 0, 0, 0, 0, 0)}modulo the equivalence relation (a, b, c, d, e, f, V ) ∼ (ka, kb, kc, kd, ke, kf, k3V )

for any k ∈ K∗. We will denote this space simply as P(1, 1, 1, 1, 1, 1, 3) when the field of

definition is clear. The elements of this weighted projective space will be written as

[a : b : c : d : e : f : V ].

1In general, PK(d0, . . . , dn) with coordinates x0, . . . , xn is the weighted projective n-space defined as
Kn+1 − {(0, . . . , 0)} modulo the equivalence relation

(x0, . . . , xn) ∼ (kd0x0, . . . , k
dnxn)

for any k ∈ K∗.
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In this language, finding the rational solutions to (1) then amounts to finding rational

points on the variety X. Even more, if the interest is to find points corresponding to

“non-degenerate” tetrahedra (that is, with none of the sides equal to 0), then studying

any of the standard affine charts of X (that is, given by some coordinate not equal to

zero) will suffice.

1.2 Case 5 of Buchholz’s Classification

As mentioned in the introduction, these are tetrahedra (a, b, c, d, e, f, V ) that satisfy the

extra conditions a = d = f , b = e. Substituting these into (1) gives

(12V )2 = −(a2 + 2b2 − c2)(a2 − b2 − ac)(a2 − b2 + ac),

which after introducing y = 12V gives the equation of a weighted projective surface S

defined by

S : y2 = −(a2 + 2b2 − c2)(a2 − b2 − ac)(a2 − b2 + ac) (2)

in weighted projective space P(1, 1, 1, 3) with coordinates a, b, c, y.

1.2.1 An Affine Part of the Surface

We will take a closer look at the affine part of S of points satisfying a 6= 0 which we will

denote by Sa and which is defined by

Sa : y2
1 = (1 + 2λ2 − x2)(x− (1− λ2))(x+ (1− λ2))

where λ = b/a, y1 = y/a3 and x = c/a are affine coordinates2 in A3.

1.2.1 Theorem. The surface Sa is birationally equivalent to the surface

E : v2 = u3 +A(λ)u+B(λ) (3)

with coordinates u, v, λ (the λ-coordinate is the same in both Sa and E), where

A(λ) = −(16− 32λ4 + 24λ6 + λ8)/3

B(λ) = 2(2 + λ4)(−32 + 112λ4 − 72λ6 + λ8)/27.

2It will become clear why we have chosen these awkward names for the coordinates in what follows.
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Proof. Note that the defining equation of Sa also defines a curve over Q(λ) which is of

the form y2
1 = f(x) with f(x) a polynomial of degree 4 in x with no repeated roots over

Q(λ) and a point O = (x, y1) = (λ2 − 1, 0) defined over Q(λ). It is known that over any

field k, an equation of the form y2 = f(x) with f(x) ∈ k[x] a polynomial of degree 4 in x

with a root in k and no repeated roots over k is an elliptic curve (see Appendix A), and

there are standard ways to bring this equation into Weierstrass form by taking one of the

points corresponding to a root of f(x) in k to infinity. We will do this for the equation

of Sa regarding it as that of the elliptic curve over Q(λ) to illustrate how the process is

done3 .

With this at mind, we will use subindices on the variables and on the polynomial f to

keep track of each transformation to be made. We begin with the equation y2
1 = f(x) for

which we will rename x as x1 and f as f1.

First homogenize the equation y2
1 = f1(x1) to obtain

Y 2
1 Z

2
1 = Z4

1f1(X1/Z1)

in P2(Q(λ)) where O = [X1 : Y1 : Z1] = [λ2 − 1 : 0 : 1] and then make the change of

variables

X1 = (λ2 − 1)X2

Y1 = Y2

Z1 = X2 + Z2

sending O to [1 : 0 : 0]. The curve with new projective coordinates X2, Y2, Z2 has affine

part Z2 6= 0 (i.e., y2 = Y2/Z2, and x2 = X2/Z2) given by

y2
2(x2 + 1)2 = f2(x2)

where f2 is a polynomial of degree 3 in Q(λ)[x2] whose leading coefficient is c = 2λ2(λ2 −
1)(λ2 − 4). To remove this coeficient and the (x2 + 1)2 term on the left, multiply the

whole equation by c2 and rewrite the equation in terms of the new variables x3 = cx2 and

y3 = c(x2 + 1)y2. This gives an equation of the form

y2
3 = f3(x3)

3The transformation shown in Appendix A could have also been used, but we prefered to use projective
coordinates explicitly here.
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where f3 is a monic cubic polynomial in Q(λ)[x3]. To remove the x2
3 term in f3, take its

coeficient d = λ4− 12λ2− 4 and make the change of variable x4 = x3 + d/3. The resulting

equation

y2
3 = f4(x4)

is the one stated in the theorem after renaming the variables u = x4, v = y3.

The total transformation between these curves is given by

v =
2y1λ

2(λ2 − 1)(λ2 − 4)
(λ2 − 1− x)

(4)

u =
λ6 + 5λ4x− 13λ4 − 12λ2x+ 8λ2 + 4x+ 4

3(λ2 − 1− x)

with inverse

x =
λ2 − 1

4− 12λ2 + 5λ4 + 3u
(5)

y1 =
18vλ2(λ2 − 4)(λ2 − 1)
(4− 12λ2 + 5λ4 + 3u)2

.

Returning to the surfaces, these equations show that the surface E in A3 with coor-

dinates u, v, λ defined by equation (3) is birationally equivalent to Sa. The rational maps

between them are given by (4) and (5) and the identity on λ. �

Note that if we consider the morphism

σ : Sa → A1

(x, λ, y1) 7→ λ

then the previous theorem implies that the fibre above λ ∈ A1 (that is, σ−1(λ)) is an

elliptic curve over Q for all but finitely many λ ∈ A1(Q). This fact will be exploited in

the following sections and the situation will be dealt with in Chapter 2 and analyzed in

more detail using more heavy machinery. A very schematic diagram of the situation looks

something like that depicted in Figure 2.

The fibres that are not elliptic curves occur above the values of λ where the discriminant

∆ = 4A3(λ) + 27B2(λ) vanishes. The discriminant is computed to be

∆(λ) = λ8(λ− 2)4(λ+ 2)4(λ− 1)2(λ+ 1)2(2λ2 + 1).

If ∆(λ0) = 0 then the fibre above λ0 will be a union of rational curves defined over Q.

In this thesis we will refer to rational curves as parametrizable curves due to the fact that

8



Figure 2: σ and its fibres.
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the term rational already has an important meaning. Some of these fibres could contain

infinitely many rational points, but we will be interested here in parametrizable curves

with points in infinitely many fibres. In the following section we will give parametrizations

of two such curves, each with an infinite number of rational points.

1.2.2 Parametrizable Curves on the Surface

By setting a = c in (2) one obtains the equation y2 = 2b4(2a2 − b2) which defines a curve

that is birationally equivalent to a conic with a trivial rational point. Specifically, setting

r = y/ab2 and s = b/a we obtain

4 = r2 + 2s2

with the point (s, r) = (0, 2). Using the chord method one finds a parametrization for this

conic in terms of a parameter t, namely

s(t) =
4t

t2 + 2
, r(t) =

4− 2t2

t2 + 2
.

Setting momentarily a(t) = c(t) = 1 and finding b(t), y(t) from the equations r = y/ab2

and s = b/a one finds a parametrization for C1 which can be scaled using the homogeneity

of the equation of S by multiplying by t2 + 2 (and y by (t2 + 2)3) giving

a(t) = t2 + 2

b(t) = 4t

c(t) = a(t)

y(t) = 32t2(2− t2)

Setting c = 3b/2 gives another parametrizable curve C2 on S with a rational point4 .

The parametrization of C2 is given by

a(t) = 4(t2 − 1)

b(t) = 2(t2 + 1)

c(t) = 3(t2 + 1)

y(t) = 8t(3t2 − 5)(5t2 − 3).

4This curve comes from [Chi04], and was probably found using a fibration of the sort shown earlier but
setting c = λb and analyzing the singular fibres.
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Thus, we already have an infinite number of rational points on S lying on C1 and

C2 since every t ∈ Q gives a rational point on each of these curves. In the next section

however, we will show that both curves generate an infinite family of rational curves on

S, each containing and infinite number of rational points, thus proving that the set of

rational points on S is Zariski dense.

1.2.3 The Set of Rational Points is Zariski Dense

Every parametrizable curve T lying inside S, given say as [a(t) : b(t) : c(t) : y(t)] has an

affine part lying on Sa which we will also denote by T given by

(x(t), λ(t), y1(t)) =
(
c(t)
a(t)

,
b(t)
a(t)

,
y(t)
a3(t)

)
.

If we substitute λ(t) for λ in the equation for the surface E from theorem 1.2.1 we

obtain an equation of the form v2 = u3 + AT (t)u + BT (t) where AT (t) = A(λ(t)) and

BT (t) = B(λ(t)). If the discriminant 4A3
T (t) + 27B2

T (t) does not vanish, this equation will

define an elliptic curve ET over the field k(t) where a(t), b(t), c(t), y(t) ∈ k(t), given by

ET : v2 = u3 +AT (t)u+BT (t).

Transformation (4) then gives a point PT = (uT (t), vT (t)) on ET corresponding to T

defined over k(t). Moreover, every point on ET (k(t)) gives rise to a parametrizable curve

on Sa over k. Specifically, if (u(t), v(t)) is a point on ET (k(t)), then by (5) we obtain a

curve on Sa parametrized by

λ(t) = λ(t) (6)

x(t) =
λ2(t)− 1

4− 12λ2(t) + 5λ4(t) + 3u(t)

y1(t) =
18vλ2(t)(λ2(t)− 4)(λ2(t)− 1)
(4− 12λ2(t) + 5λ4(t) + 3u(t))2

.

Therefore, using the group structure on ET we can find “multiples” of T in Sa by

finding multiples of PT in ET and then using (6). If T is parametrized over5 Q (note

that this implies that T has infinitely many rational points), then every multiple of T will

also be parametrized over Q as both the group structure on ET and the map (6) will be

defined by rational functions over Q(t). The set Γ of parametrizable curves constructed by

5That is, a(t), b(t), c(t), y(t) ∈ Q(t).
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finding multiples of T in Sa in this way could be {T}, or there could be some non-trivial

multiples of T . It is simply a matter of checking.

As an illustration we will prove that 2 · C1 6= C1. For the curve C1 we have λ(t) =

4t/(t2 + 2). The curve C1 corresponds to the point

uC1(t) = −4(t12 + 4t10 − 260t8 − 544t6 − 1040t4 + 64t2 + 64)
3(t2 − 2)2(t2 + 2)4

vC1(t) = −1024
(t2 − 4t+ 2)(t2 − 2t+ 2)(t2 + 2t+ 2)(t2 + 4t+ 2)t4

(t2 − 2)3(t2 + 2)5
.

on the elliptic curve

EC1 : v2 = u3 +AC1(t)u+BC1(t) (7)

where

AC1 (t) = −
16

3

t16 + 16t14 − 400t12 + 2496t10 + 17504t8 + 9984t6 − 6400t4 + 1024t2 + 256

(t2 + 2)8

BC1 (t) = −
128

27

(t8 + 8t6 + 152t4 + 32t2 + 16)(t16 + 16t14 − 784t12 + 2496t10 + 14432t8 + 9984t6 − 12544t4 + 1024t2 + 256)

(t2 + 2)12
.

If we duplicate this point and then transform it back to Sa and subsequently to S, we
find the multiple 2 · C1 of the parametrizable curve. The result of this computation is

a(t) = t2 + 2

b(t) = 4t

c(t) =
(t2 − 4t+ 2)(t2 + 4t+ 2)(t8 + 20t6 − 56t4 + 80t2 + 16)

(t2 + 2)(t8 − 12t6 + 72t4 − 48t2 + 16)

y(t) = −283
t4(t2 − 4t+ 2)(t2 − 2t+ 2)(t2 − 6)(t2 − 2)(t2 − 2

3
)(t2 + 2t+ 2)(t2 + 4t+ 2)

(t8 − 12t6 + 72t4 − 48t2 + 16)2
.

Therefore, 2 · C1 6= C1 and we have found more rational points on S.

It can even happen that with this group structure the curve T has infinite order giving

rise to an infinite number of parametrizable curves lying inside S, each with an infinite

number of rational points when T can be parametrized over Q. The following theorem

then comes at hand.

1.2.2 Theorem (Nagel-Lutz). Let E/Q(t) be an elliptic curve given by

E : y2 = x3 + a2x
2 + a4x+ a6

where a2, a4, a6 ∈ Q[t]. If P = (xP , yP ) ∈ E(Q(t)) is a torsion point then xP , yP ∈ Q[t].
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Proof. There seems to be no reference in the literature for this theorem in the form stated.

We refer the reader to [vL00] p. 58, for a sketch of the proof, or to [ST92] where the proof

of the theorem can be followed by replacing Q by Q(t) and Z by Q[t] in the proof of the

classical theorem. �

With the aid of this theorem we will prove the following.

1.2.3 Corollary. The points PC1 ∈ EC1(Q(t)) and PC2 ∈ EC2(Q(t)) corresponding to the

curves C1 and C2 have infinite order.

Proof. The main idea is to show that for T = Ci, i = 1, 2, one can transform the equation

of ET so that AT (t) and BT (t) become polynomials by an appropriate change of coordi-

nates removing the denominators of AT and BT . It is then easily checked that after this

transformation the point PT corresponding to T does not have coordinates in Q[t] in either

of the cases. By Theorem 1.2.2 it will then follow that the curves have infinite order.

We will prove the result for C1 as the computations for C2 are similar. The change

of variables making AC1(t), BC1(t) belong to Q[t] is obtained by multiplying the whole

equation by (t2 + 2)12 and setting u′ = (t2 + 2)4u and v′ = (t2 + 2)6v, which gives the

elliptic curve

E′C1
: v′2 = u′3 +A′C1

(t)u′ +B′C1
(t)

where

A′C1
(t) = AC1(t)(t2 + 2)8 ∈ Q[t]

B′C1
(t) = BC1(t)(t2 + 2)12 ∈ Q[t]

and where C1 corresponds to the point P ′C1
= (u′C1

(t), v′C1
(t)) given by

u′C1(t) = −4(t12 + 4t10 − 260t8 − 544t6 − 1040t4 + 64t2 + 64)

3(t2 − 2)2

v′C1(t) = −1024
(t2 + 2)(t2 − 4t+ 2)(t2 − 2t+ 2)(t2 + 2t+ 2)(t2 + 4t+ 2)t4

(t2 − 2)3
,

which does not have coordinates in Q[t]. �

The existence of such an infinite set of curves, each with infinitely many rational points

implies that the set of rational points on S is Zariski dense as the following proposition

shows.
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1.2.4 Proposition. Let X be an irreducible surface. If Γ is an infinite set of irreducible

curves contained in X, then
⋃

Γ is a Zariski dense subset of X.

Proof. The closure Ω of
⋃

Γ contains all the curves, which by hypothesis are irreducible.

If dim Ω = 1 this would imply that the maximal irreducible closed subsets of Ω are curves,

but Ω is closed and therefore can be expressed as a finite union of its maximal irreducible

closed subsets (see [Har77], Proposition I.1.5). However, no finite union of the curves is

equal to Ω as any curve intersects any other in only a finite number of points. Therefore,

dim Ω = 2 and since X is irreducible this implies that Ω = X. �

With this at hand we can prove the main result about rational points on S.

1.2.5 Theorem. The set of rational points on S is Zariski dense.

Proof. The set Γ = {n · C1 : n ∈ N} is an infinite set of curves contained in S, and

Proposition 1.2.4 implies that ⋃
Γ =

∞⋃
n=1

n · C1

is a Zariski dense subset of S. The set of rational points in n ·C1 is Zariski dense in n ·C1

since every n ·C1 has an infinity of rational points and any infinite set of points in a curve

is Zariski dense. From this it follows that the set of rational points, which is a dense subset

of
⋃

Γ, is dense in S. �

1.3 Case 6 of Buchholz’s Classification

A much more symmetric equation for another projective surface related to rational tetra-

hedra is obtained when equating the opposite edges of the tetrahedron (i.e., a = d, b = e,

c = f). The resulting equation (after renaming y = 12V ) is

y2 = 2(a2 + b2 − c2)(a2 − b2 + c2)(−a2 + b2 + c2).

Here again, we can define a fibration of the surface where almost all the fibres are

elliptic curves, this time with λ = c/(a− b). Specifically, by setting λ = c/(a− b), x = a/b

and y1 = y/b2(a− b) we arrive at the equation

y2
1 = 2[x2(1− λ2) + 2λ2x+ 1− λ2][x(1 + λ2)− (λ2 − 1)][x(λ2 − 1)− (λ2 + 1)]

which again is of the form y2
1 = f(x) with f(x) ∈ Q(λ)[x] of degree 4 and no repeated

roots over Q(λ). The curve defined by the equation over the field Q(λ) contains the point
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O = (x, y1) = ((λ2 − 1)/(λ2 + 1), 0) and so is an elliptic curve over Q(λ). Since the

discriminant of this curve is a non constant polynomial over Q, all but finitely many fibres

of the morphism projecting the surface on the λ-coordinate are elliptic curves over Q.

Sending the point O to infinity, this time using the transformation found in [ST92]

with β = 1 and making further transformations to make the leading coeficient equal to 1,

we finally end up with the equation6

v2 = u3 + a1(λ)u2 + a2(λ)u+ a3(λ) (8)

where

a1(λ) = 22(λ2 + 1)(λ6 − 15λ4 + 7λ2 − 1)

a2(λ) = −22(λ2 − 1)(5λ2 − 1)(λ2 + 1)4

a3(λ) = −29(λ2 − 1)2(λ2 + 1)7.

The parametrizable curve

a(t) = t2 + 2

b(t) = 4t

c(t) = t2 + 2

y(t) = 32t2(2− t2)

on the surface is found by setting a = c in a way similar to what was done with C1 and

C2 (In fact, the curve is C1, but it is now embedded into another surface).

This curve corresponds to a point on the elliptic curve over Q(t) given by

v2 = u3 + b1(t)u2 + b2(t)u+ b3(t)

obtained from (8) by replacing λ by λ(t) = c(t)/(a(t)− b(t)) (i.e., bi(t) = ai(λ(t))).

The denominators of b1(t), b2(t) and b3(t) are (t2 − 4t + 2)8, (t2 − 4t + 2)12 and

(t2 − 4t + 2)18 respectively, and the coordinates of the point corresponding to the curve

are given by

v(t) =
216t4(2 + t2)2(2− 2t+ t2)2(4− 8t+ 12t2 − 4t3 + t4)3

(−2 + t2)3(2− 4t+ t2)11

u(t) =
212t3(2 + t2)2(2− 2t+ t2)2(4− 8t+ 12t2 − 4t3 + t4)

(−2 + t2)2(2− 4t+ t2)7
.

6See Appendix B for the explicit computations.
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Then, the change of variables to make the bi(t) polynomials in t is obtained by mul-

tiplying the equation by a suitable power of t2 − 4t + 2 under which the coordinates of

the point on the elliptic curve over Q(t) corresponding to the curve will still have poly-

nomial denominators. An application of Proposition 1.2.2 then proves that the point

corresponding to the curve has infinite order, and therefore gives rise to an infinite set

of parametrizable curves on the surface, each with infinitely many rational points. This

gives the following result by Proposition 1.2.4.

1.3.1 Theorem. The set of rational points on the surface related to tetrahedra of case 6

is Zariski dense.

1.4 Rational Solutions Corresponding to Realizable Tetra-
hedra

As mentioned in section 1.1, not every rational solution to (1) corresponds to a rational

tetrahedron, not even a positive solution. The reason why this is so is that with the values

(a, b, c, d, e, f) of a solution it may not be possible to form the triangles which will be the

faces of the tetrahedron. The general tetrahedron has triangle faces abc, aef , bdf and cde,

and a positive rational solution to (1) may give values with which some of the faces do

not exist. For example no triangle abc exists for the values (a, b, c) = (2, 9, 5), and this is

due to the fact that the triangle inequality is not satisfied for one of the sides (9 ≮ 2 + 5).

The condition necessary for a triangle with edges a, b, c to exist is that all three triangle

inequalities a < b+ c, b < a+ c and c < a+ b hold.

In another direction (but one that concerns us less as will be explained below), there

exist triangular faces abc, aef , bdf and cde for which no tetrahedron exists. The geometric

reason behind this fact is that it can happen that the face ∆ with the largest area has area

greater than the sum of the remaining three, so when constructing the tetrahedron with ∆

lying down on a table and laying the other triangles on their respective bases, their edges

will not meet above ∆ and they will simply collapse on top of ∆. In [DS92] it is proved

that if the edges (a, b, c, d, e, f) define realizable triangular faces for the tetrahedron (that

is, all triangle inequalities for abc, aef , bdf and cde are satisfied), then they will define a

realizable tetrahedron if and only if the right hand side of equation (1) relating the volume

of the tetrahedron to its edges is positive. An example of a solution where this fails is

given by a = b = c = 14 and d = e = f = 8 where the right hand side gives −153, 664.
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As our focus here was on finding rational solutions for the whole equation which in-

cludes the right hand side being the square of a rational number, the previous condition is

always satisfied. Therefore, the rational solutions we have found will be realizable tetra-

hedra if and only if both the edges and V are positive and the triangle inequalities for all

the faces are satisfied.

As an illustration consider case 5. The tetrahedra from case 5 only have two types of

faces given by the triangles aab and abc. For the face aab to exist we need b < 2a as the

other inequalities are trivially satisfied if the edges are positive. For the face abc to exist

we need a < b+ c, b < a+ c and c < a+ b.

We will call a point [a : b : c : y] on the projective surface S related to Case 5 a positive

point if it has a representative where all the coordinates are positive (remember that

y = 12V ). Note that this is equivalent to requiring that all the ratios of its coordinates

are positive, or that its affine coordinates x, λ, y1 are positive if a 6= 0.

We can now take a look at the parametrizable curve C1 to see if it gives any tetrahedra.

The curve C1 was defined by a = c on the surface and was given by

a(t) = t2 + 2

b(t) = 4t

c(t) = a(t)

y(t) = 32t2(2− t2).

For a point on C1 to be positive we need 0 < t <
√

2 since a(t), c(t) are always

positive and so b(t) and y(t) have to be positive. It is easily checked that both b < 2a and

b < a + c are always satisfied (in fact, they are the same inequality), and that a < b + c

and c < a + b are satisfied only when t > 0. Therefore, only the rational points on C1

given by 0 < t <
√

2 give rational tetrahedra.

It may be the moment to note the subtleties regarding the use of weighted projective

coordinates on our surface. The curve C1 on S was defined by a = c and so all but finitely

many points on the surface S satisfying a = c will be obtained from the parametrisation

we found. Substituting t = 3 gives the values (a, b, c, y) = (11, 12, 11,−2016) which do not

define a tetrahedron only because of the fact that y < 0. There then must be a point P

on C1 corresponding to (a, b, c, y) = (11, 12, 11, 2016) (unless we are really unlucky) giving

this rational tetrahedron as it satisfies a = c, but it is not obvious what the value of t is

at a first glance.
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The reason for this is that we are working with projective coordinates, so P = [11 :

12 : 11 : 2016] will be given by the parametrization of C1 as P = [11r : 12r : 11r : 2016r3]

for some r ∈ Q. With a little algebra one finds t = 2/3 and r = 2/9 giving the rational

tetrahedron with edges (a, b, c) = (22/9, 24/9, 22/9) = 2/9(11, 12, 11). Of course t = 2/3

lies in the range 0 < t <
√

2 where we said all tetrahedra where obtained.

The situation however is more complicated if one takes a look at the new curve 2 · C1

that we obtained by duplicating the curve C1, let alone the infinite set of curves generated

by C1. Our computations showed that 2 · C1 was parametrized as

a(t) = t2 + 2

b(t) = 4t

c(t) =
(t2 − 4t+ 2)(t2 + 4t+ 2)(t8 + 20t6 − 56t4 + 80t2 + 16)

(t2 + 2)(t8 − 12t6 + 72t4 − 48t2 + 16)

y(t) = −283
t4(t2 − 4t+ 2)(t2 − 2t+ 2)(t2 − 6)(t2 − 2)(t2 − 2

3
)(t2 + 2t+ 2)(t2 + 4t+ 2)

(t8 − 12t6 + 72t4 − 48t2 + 16)2

and then the verifications of the triangle inequalities for the face areas becomes a com-

plicated problem. We will not deal here with the issue of when points of 2 · C1 nor any

multiple of C1 are rational tetrahedra. Some analysis on what the group operation does

to the curve on the surface is necessary as otherwise each multiple of C1 is a situation that

must be analyzed by itself.

A relevant fact for anyone wishing to pursue this problem is that all the triangle

inequalities for a triple (a, b, c) are satisfied if and only if the right hand side of equation

(9) given in section 1.6 (below) is positive.

1.5 The General Case

The previous sections show some partial results on the existence and nature of rational

tetrahedra under certain restrictions. As was mentioned in the introduction, in [Chi04]

all the possible surfaces obtained by equating the edges are studied and the question of

whether there exist infinitely many, finitely many or no rational tetrahedra under each

condition is answered. In the previous sections we extended the results in two of the

cases using the known points to generate others, we set the whole situation in a much

more geometric setting7 , and we proved that the set of rational solutions is dense in the

Zariski topology of the surfaces.

7There is in fact no mention of the surfaces defined by the equations in [Chi04], nor in any reference in
the relevant literature we know of.
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It would be desirable of course to study the equation in full generality but the amount

of variables makes the problem difficult. It is clear that the results obtained depended

heavily on reducing the number of variables, in this way making it possible to use the

theory of rational and elliptic curves and ultimately that of elliptic surfaces.

1.6 Heron Tetrahedra

A natural generalization of the problem regarding tetrahedra with rational edges and

volume is to consider the problem of when the edges, volume and face areas are rational.

These are known as heron tetrahedra (though the term is still not universal) as a natural

extension of the term heron triangle for a triangle with rational sides and area in honor

of the equation relating the edges of a triangle and its area from Heron of Alexandria (60

A.D.). This problem will not be undertaken in this thesis. Nonetheless, we will give the

relevant equations and will also show a very interesting surface related to a simplification

of this problem.

We begin by stating the relevant results regarding heron triangles.

1.6.1 Heron Triangles

The formula relating the sides a, b, c of a triangle with its area A is given by

(4A)2 = 2(a2b2 + a2c2 + b2c2)− (a4 + b4 + c4) (9)

and is known as heron’s formula. Triangles with rational edges and area are known as

heron triangles and have been studied for several centuries.

In a way similar to what was done with the equations studied previously for tetrahedra,

equation (9) can be viewed as the defining equation of a surface H in weighted projective

space P(1, 1, 1, 2) with coordinates [a : b : c : y] where y = 4A. Positive rational points on

H (in the projective sense) satisfying the triangle inequalities correspond to heron triangles

modulo scaling.

A very well known fact about this surface is that it is parametrizable over Q. There-

fore, all heron triangles are known and we have a parametrization of them. The first

parametrization was given by Euler8 (see, [Dic52] p. 193), but we will be concerned here

with the following one from [Car59],

8Of course, Euler did not state this fact geometrically as we have just done. Nonetheless, it is neither
stated in [Car59] in this way nor in most books on number theory. Our use of algebraic geometry is
extensive in this thesis in order to illustrate the usefulness it has for number theory.

19



a = n(m2 + k2)

b = m(m2 + k2) (10)

c = (m+ n)(mn− k2)

y = knm(m+ n)(mn− k2)

which gives all the heron trianlges (i.e., the edges are positive and the triangle inequalities

are satisfied) for k,m, n > 0 and k2 > mn.

1.6.2 An Interesting Surface

The parametrization of heron triangles (10) naturally suggests itself as a starting point

for searching heron tetrahedra, specifically for case 6 as the faces of these tetrahedra are

all congruent, and so there is only one more equation to deal with.

If one wishes to search for heron tetrahedra in this family, one might as well start off

by making sure the surface areas are rational by substituting this parametrization, as then

one only needs to make sure the volume is rational. The resulting equation

(12V )2 = (4mn(m+ n)(mn− k2))2(k2(m+ n)2 − (mn− k2)2)(m2 − k2)(n2 − k2)

defines a surface that is birationally equivalent to the projective surface with coordinates

[k : m : n : y] defined by

y2 = (k2(m+ n)2 − (mn− k2)2)(m2 − k2)(n2 − k2)

by setting y = 12V/(4mn(m+ n)(mn− k2)).

All heron tetrahedra with equal opposite edges come from a rational point on this

surface as the parametrization gives all heron triangles (modulo scaling) and therefore all

rational face areas a tetrahedron can have. This surface has been partly studied in [Buc92]

and [Chi04] but there is still a lot to be done.

We cite here the equations showing how to define a fibration for this surface where

almost all fibres are elliptic curves. In this way, this seemingly more complicated problem

has been reduced into one in a familiar setting.

The affine part of the surface corresponding to k 6= 0 is given by

z2 = ((x+ λ)2 − (xλ− 1)2)(x2 − 1)(λ2 − 1)
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where z = y/k2, x = m/k, λ = n/k which is again seen to define an elliptic curve over

Q(λ). It can be seen that a change of coordinates sending the point (x, z) = (1, 0) to

infinity yields the following equation in Weierstrass form.

v2 = u(u+ λ2 − 1)(u− λ2(λ2 − 1)) (11)

In this manner, any known heron tetrahedron from Case 6 gives a value of λ and

therefore a point on a curve Eλ defined over Q defined by (11). Eλ is elliptic for all but

finitely many values of λ. It would be desirable to know when the point has infinite order

and when the points of the generated subgroup correspond to heron tetrahedra but the

problem is yet to be settled.
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Chapter II

FIBRATIONS AND GENERIC FIBRES

The main purpose of this chapter is to study the situation encountered in Chapter 1 in an

even more geometric setting. We will take a closer look at the geometry behind fibrations

of surfaces, focusing mainly on explaining the concept of generic fibre. With the aid of this

concept we will give some insight on the geometry behind the results obtained in Chapter

1.

Generic fibres will be discussed in the modern language of schemes, where their defi-

nition has a strong geometric meaning. The reader is assumed to have a basic knowledge

of scheme theory which can be found on the first sections of Chapter 2 of Hartshorne’s

book [Har77], though he/she may skip the technical details regarding schemes and fo-

cus on understanding the concept of the generic fibre of a morphism projecting an affine

hypersurface onto one of its coordinates.

2.1 Varieties and Schemes

Every affine variety V has a corresponding affine scheme given by Spec A(V ) where A(V )

is the coordinate ring of V . Even though modern algebraic geometers identify these

two objects and refer to one or the other interchangeably, in this thesis we will refer

to Spec A(V ) as the scheme associated to the variety V for the sake of clarity. We

will continue to call varieties the objects from classical algebraic geometry and whenever

we want to refer to the associated scheme we will do so explicitly. For any two affine

varieties V and W and a morphism σ : V → W between them, there is an induced ring

homomorphism between their coordinate rings σ̂ : A(W ) → A(V ) given by f 7→ f ◦ σ.

With σ̂ we can define a map between the associated schemes σ̄ : Spec A(V )→ Spec A(W )

by sending every prime ideal of A(V ) to its inverse image under σ̂. This induced map is

in fact a morphism of schemes.
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The main construction of schemes other than affine ones is the construction of Proj S

for a graded ring S. In the case where S = k[x0, . . . , xn] with the usual grading (k of

degree 0 and x1, . . . , xn of degree 1) the scheme Proj S is the scheme associated to the

usual projective n-space Pnk . However, the construction of Proj S in its full generality

allows one to construct schemes other than the one associated to regular projective space.

For example, if we define on S = k[x0, . . . , xn] a different grading by setting the degree of

the elements of k equal to 0 and giving the indeterminate xi degree di, then Proj S is a

weighted projective space such as those encountered in Chapter 1.

As a matter of fact, we can give each variety encountered in Chapter 1 a structure of

projective scheme in the following way: to the ring k[a, b, c, y] give the grading with a, b, c

of degree 1 and y of degree 3. Then the equation studied can be written as F (a, b, c, y) = 0

with F weighted homogeneous in this grading, and so S = k[a, b, c, y]/(F ) will be a graded

ring since the ideal (F ) is homogeneous. Proj S is the scheme corresponding to the

weighted projective variety defined by F .

2.2 Fibred Products, Fibres and Generic Fibres

2.2.1 Definition. If X → S is a morphism of schemes, we say X is a scheme over S.

2.2.2 Definition (Fibred Product). Let S be a scheme and X → S, Y → S be schemes

over S. The fibred product of X and Y over S is defined to be the scheme X×S Y together

with morphisms X ×S Y → X and X ×S Y → Y that commute with X → S and Y → S,

satisfying the following universal property:

For every scheme W , every pair of morphisms W → X, W → Y commuting

with X → S and Y → S factors uniquely through X ×S Y .

We refer the reader to [Har77], Section II.3, for a proof of the existence and uniqueness

of such an object, as well as the proof of the following fundamental fact.

2.2.3 Proposition. If X,Y, S are affine schemes, say X = Spec A, Y = Spec B and

S = Spec R, then the fibred product of X and Y over S is X ×S Y = Spec (A⊗R B).

For example, if X = Spec k[x1, . . . , xn], Y = Spec k[y1, . . . , ym] and S = Spec k then

X ×S Y = Spec k[x1, . . . , xn]⊗k k[y1, . . . , ym]

∼= Spec k[x1, . . . , xn, y1, . . . , ym].
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One of the various uses of the fibred product is to give a scheme structure to the fibres

of a morphism:

2.2.4 Definition. Let f : X → Y be a morphism of schemes, take y ∈ Y and let k(y) be

the residue field at y (i.e., the local ring at y modulo its maximal ideal). The fibre Xy of

f over y is defined to be the scheme

Xy = X ×Y Spec k(y).

2.2.5 Proposition. With the notation as above, the topological space of the scheme Xy

is homeomorphic to the set f−1(y) with its induced topology as a subspace of X.

Proof. [Har77], Ex. II.3.10. �

In this way, any morphism of schemes can be viewed as a family of schemes (its fibres)

parametrized by the points of the image scheme. This of course gives a nice geomet-

rical setting for morphisms as it allows one to “decompose” a scheme into a family of

schemes. Even more, it can actually give generic information about the fibres because of

the existence of generic points. As an illustration consider the following example:

2.2.6 Example. Let V ⊆ A3 be the variety defined by z2 = x2 − y2 and consider the

morphism

σ : V → A1 (12)

(x, y, z) 7→ z.

The fibre above any t ∈ A1
k is the curve defined in A3

k by t2 = x2− y2 and z = t, which

is trivially isomorphic to the curve t2 = x2 − y2 in A2
k. In this manner, V is composed of

conics parametrized by the z-axis, all of them being smooth except when t = 0, in which

case the fibre consists of two lines intersecting at the origin, see Figure 3.

Now, the scheme associated to the variety V is given by

Spec k[x, y, z]/(z2 − x2 + y2),

and σ can be extended to the morphism of schemes

σ̄ : Spec k[x, y, z]/(z2 − x2 + y2)→ Spec k[z]

as was explained in section 2.1.
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Figure 3: Fibres of σ

In this setting, the fibre of σ above z = t corresponds to the fibre of σ̄ above the point

(z − t). By definition this is given by

Spec k[x, y, z]/(z2 − x2 + y2)×Spec k[z] Spec k((z − t))

where k((z − t)) is the residue field of the local ring k[z](z−t). By Proposition 2.2.3 this

scheme is the affine scheme

Spec k[x, y, z]/(z2 − x2 + y2)⊗k[z] k((z − t)).

However,

k[x, y, z]/(z2 − x2 + y2)⊗k[z] k((z − t)) ∼= k[x, y]/(t2 − x2 + y2)

(see Appendix C, Proposition C.2 for a proof), so the fibre of σ̄ above the point (z − t) is

Spec k[x, y]/(t2 − x2 + y2),

that is, the fibre is the scheme corresponding to the hyperbola t2 = x2 − y2 in A2
k as

expected. Note by the way that for t = 0 we are constructing the spectrum of a reducible

ring since the fibre over t = 0 is not irreducible.
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There is however an extra point in Spec k[z] which was not present in the classical

variety A1
k: the generic point (0) whose closure is all of Spec k[z]. The fact that this point

is dense suggests the fact that it carries information about almost all A1
k and so in some

sense the fibre over this point should contain information about almost all the fibres. This

will be made precise in what follows.

2.2.7 Definition. Let A be an integral domain and ψ : X → Spec A be a morphism of

schemes. The fibre of ψ over the point (0) ∈ Spec A is called the generic fibre of ψ.

For any morphism of varieties we will define its generic fibre as the generic fibre of the

corresponding morphism of their associated schemes.

Generic fibres contain information about almost all the fibres. The exact extent of

the previous statement is hard to establish, but the main idea is that there are properties

(such as smoothness) for which the fact that the generic fibre has the property implies

that “almost all” the fibres will have the property (meaning the fibres above an open set).

It then comes as no surprise why this fibre is called the generic fibre.

2.2.8 Example. The generic fibre of the map σ in (12) is

Spec k(z)[x, y]/(z2 − x2 + y2)

whose classical-algebraic geometry counterpart is the curve z2 = x2 − y2 defined in A2
k(z).

This will follow from the next Proposition. Note that z2 = x2 − y2 is a smooth curve in

A2
k(z) so all but finitely many fibres are smooth. Of course, we already knew that only the

fibre corresponding to t = 0 is singular.

2.2.9 Proposition. Let the hypersurface V ⊆ Ank with coordinates x1, . . . , xn be defined

by some f /∈ k[xi] for some fixed i. The generic fibre of the morphism (x1, . . . , xn) 7→ xi is

Spec k(xi)[x1, . . . , x̂i, . . . , xn]/(f)

Proof. By definition, the generic fibre is given by

Spec k[x1, . . . , xn]/(f)×Spec k[xi] Spec k((0))

where k((0)) is the residue field of the local ring k[xi](0), that is, k((0)) = k(xi). By

Proposition 2.2.3 this scheme is the affine scheme

Spec k[x1, . . . , xn]/(f)⊗k[xi] k(xi)
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and this ring is isomorphic to k(xi)[x1, . . . , x̂i, . . . , xn]/(f), see Appendix C, Proposition

C.3 for a proof. �

The important fact about generic fibres that we will use is that a closed point in the

generic fibre of a morphism of a variety over a curve specializes to a point in all but finitely

many fibres. To illustrate this fact let us return to the example.

Any closed point of the generic fibre Spec k(z)[x, y]/(z2 − x2 + y2) corresponds to a

point P = (xP , yP ) on the associated curve z2 = x2− y2 in A2
k(z). Therefore xP , yP ∈ k(z)

so the coordinates of P are rational functions in z over k, say P = (φ(z), ψ(z)). This

implies that the equation

z2 = φ(z)2 − ψ(z)2

holds generically. Now, the denominators of φ(z) and ψ(z) only vanish at finitely many

t ∈ k, and for any t ∈ k for which they do not vanish we have

t2 = φ(t)2 − ψ(t)2.

This implies that Pt = (x, y, z) = (φ(t), ψ(t), t), the point obtained by specializing P at t,

is a point on the fibre above z = t.

Some examples of points on the generic fibre1 are

P1 = (z, 0) (13)

P2 = (−z, 0)

P3 = (5z/3, 4z/3)

P4 =
(
z(z2 + 1)
z2 − 1

,
2z2

z2 − 1

)
.

Note also that both P3 and P4 specialize to (10/3, 8/3, 2) ∈ V for t = 2, so every point

in V may be specialized to by more than one point on the generic fibre (see Figure 4).

As a matter of fact, we can naturally identify the set of points on the generic fibre

with the sections of the morphism through the specialization map. We will prove this for

a special case in Proposition 2.2.11. We first define the sections of a morphism.

1As a matter of fact

Qm =

(
z(m2 + 1)

m2 − 1
,

2zm

m2 − 1

)
is a point on the generic fibre for any m ∈ k(z).
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Figure 4: Specialization of points on the generic fibre

2.2.10 Definition. Let ψ : X → Y be a dominant rational map of varieties. A section

of ψ is a rational map ρ : Y → X such that ψ ◦ ρ is the identity on Y as a rational map

(i.e., on the set where it is defined).

In the case when Y is a curve the image of a section of ψ is simply a curve lying in X

that is birationally equivalent to Y , and that maps 1− 1 to Y through ψ.

2.2.11 Proposition. Let the hypersurface V ⊆ Ank with coordinates x1, . . . , xn be defined

by some f /∈ k[xi] for some fixed i. There is a one-to-one correspondence between the set of

closed points on the generic fibre and the set of sections of the morphism π : (x1, . . . , xn) 7→
xi.

Proof. By permutation of the variables we may suppose that i = n. By Proposition 2.2.9

the generic fibre of π is given by the scheme

Spec k(xn)[x1, . . . , xn−1]/(f)

which corresponds to the hypersurface H ⊆ An−1
k(xn) defined by f .

Any closed point on the generic fibre corresponds to a point P ∈ H and P has co-

ordinates in k(xn) given by rational functions in xn over k, say as xi(P ) = φi(xn) for
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i = 1, . . . , n − 1. Then, the map defined by t 7→ (φ1(t), . . . , φn−1(t), t) is a section of the

projection π : (x1, . . . , xn) 7→ xn.

Conversely, let ρ be a section of π. Then ρ : A1
k → V is given by

t 7→ (φ1(t), . . . , φn(t))

on some open subset of A1
k where the φi are rational funtions in t. Since ρ is a section

we actually have that φn(t) = t. Then Pρ = (φ1(xn), . . . , φn−1(xn)) is a point on H and

therefore gives a closed point on the generic fibre. �

Therefore, every closed point P on the generic fibre of a morphism such as those

encountered in Proposition 2.2.11 gives a curve on V which is birationally equivalent to A1
k,

namely, the image of the corresponding section. This image is the set of the specializations

of the point P on all the fibres it specializes to. Conversely, any curve lying inside V that

is birationally equivalent to A1
k and that maps 1− 1 through π corresponds to a point on

the generic fibre. To see why this is so, note that if C ⊂ V is a curve that is birationally

equivalent to A1
k, then there exists a rational map t 7→ (φ1(t), . . . , φn(t)) ∈ C. If C maps

1 − 1 through π, then φn is an injective rational function on the set where it is defined.

We can therefore set s = φn(t) and reparametrize C on an appropriate set in terms of s

by s 7→ (φ1(φ−1
n (s)), . . . , φn−1(φ−1

n (s)), s). Then (φ1(φ−1
n (xn)), . . . , φn−1(φ−1

n (xn))) will be

a point on the generic fibre. We will sometimes refer to these curves as sections since we

can identify them, see Figure 5.

2.2.12 Example. All the points on the generic fibre from the example given in (13)

are clearly seen to be sections. Conversely, lines L on the cone can be parametrized as

(at, bt, t) with t ∈ k where (a, b, 1) is the direction vector of L. Then (az, bz) is a point on

the generic fibre.
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Figure 5: Sections and Points on the Generic Fibre
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2.3 Chapter 1 Revisited

To illustrate how the previous concepts clarify the situation encountered in Chapter 1 we

will go over it again to illustrate where the main ideas came from. We will mainly focus

on Case 5 for which we have all the relevant equations. Of course, the same could be done

for Case 6, but the main purpose is to illustrate the way in which any situation as those

encountered in Chapter 1 can be analyzed more clearly and intuitively in this broader

context.

For Case 5 we were studying the equation F (a, b, c, y) = 0 where

F = y2 + (a2 + 2b2 − c2)(a2 − b2 − ac)(a2 − b2 + ac),

which was mentioned to be the defining equation of a surface S in weighted projec-

tive space P(1, 1, 1, 3). This surface was seen to correspond to the projective scheme

Proj Q[a, b, c, y]/(f) in section 2.1.

Our focus, however, was on the affine part Sa of S corresponding to a 6= 0 defined by

Sa : y2
1 = (1 + 2λ2 − x2)(x− (1− λ2))(x+ (1− λ2)) (14)

in A3 with coordinates (x, λ, y1) = (c/a, b/a, y/a3). Rewriting this equation as f(x, λ, y1) =

0 (note that f(x, λ, y1) = F (1, λ, x, y1)) we can regard Sa as the affine scheme SpecQ[x, λ, y1]/(f)

which can be seen to be one of the affine schemes of the standard cover of the projective

scheme associated to S.

For Sa we defined a projection morphism

σ : Sa → A1

(x, λ, y1) 7→ λ

whose generic fibre by Proposition 2.2.9 is given by Spec Q(λ)[x, y1]/(f), corresponding to

the curve Eλ defined by f in the affine plane over the field Q(λ). This curve was mentioned

to be an elliptic curve in the proof of Theorem 1.2.1. The fact that the generic fibre was

elliptic implied that all but finitely many fibres of σ were elliptic as was seen explicitly.

This of course gives a nice geometric setting to the arithmetic problem that is being

studied: A surface has been replaced by a curve (the generic fibre), and each point on

this curve corresponds to a curve lying inside the surface (the image of the corresponding

section). Moreover, we have a group structure on the generic fibre. Therefore, by starting
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off with a curve with rational points corresponding to a point on the generic fibre, we have

a way to obtain non-trivial curves containing rational points on the surface since multiples

of this point give curves on the surface parametrized over Q.

The change of coordinates transforming the equation of the generic fibre into Weier-

strass form is obtained by sending the point O = (x, y1) = (λ2 − 1, 0) to infinity, giving

the equation

Eλ : v2 = u3 +A(λ)u+B(λ) (15)

where

A(λ) = −(16− 32λ4 + 24λ6 + λ8)/3

B(λ) = 2(2 + λ4)(−32 + 112λ4 − 72λ6 + λ8)/27.

If we take a look at what this change of coordinates does to Sa, then we find a surface

E in A3 with coordinates (u, v, λ) whose defining equation is the same as that of Eλ.

This is the surface E that was defined in Chapter 1, which is birationally equivalent to

Sa. The point O = (x, y1) = (λ2 − 1, 0) on the generic fibre corresponds to the section

ρ : λ 7→ (λ2 − 1, λ, 0) of σ, and the change of coordinates on the generic fibre sending

the point to infinity corresponds to the change of variables on Sa sending the image of

that section to infinity, giving the surface E. The change of variables puts each fibre in

Weierstrass form (see Figure 6).

With the generic fibre in Weierstrass form, we studied the rational points on S. In

section 1.2.2 we gave parametrisations of two curves lying inside S, each with infinitely

many rational points. We will deal here with C1 which will call C in this section. The

curve C is defined by

a(t) = t2 + 2

b(t) = 4t

c(t) = a(t)

y(t) = 32t2(2− t2)

and it has an affine part Ca lying inside Sa given by

x(t) = 1, y1(t) =
32t2(2− t2)
t2 + 2

, λ(t) =
4t

t2 + 2
. (16)

Proposition 2.2.11 implies that Ca does not correspond to a point on the generic fibre

Eλ of σ since for all but finitely many λ there are two points in Ca mapping to λ through
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Figure 6: Change of Coordinates

σ (in fact, λ(t) = λ(2/t)). However, it is readily seen that Ca corresponds to a point on

the generic fibre over a field extension of Q(λ). As a matter of fact, the equation

λ =
4t

t2 + 2

implies that t2 − (4/λ)t+ 2 = 0, and so Q(t) is a quadratic field extension of Q(λ).

An equation for Eλ over the field Q(t) is obtained by replacing λ by 4t/(t2 +2) in (14),

and the curve Ca corresponds to the point (x(t), y1(t)) coming from (16). Note that the

restriction of σ to Ca is a 2 − 1 map. As a matter of fact, every point on Eλ over Q(t)

corresponds to a curve in Sa that maps at most 2−1 to the λ-line through σ. Specifically,

if (φ(t), ψ(t)) is a point in Eλ over Q(t), then the equality in (14) holds after replacing φ(t)

for x, ψ(t) for y1, and λ for 4t/(t2 + 2). The image of the map t 7→ (φ(t), 4t/(t2 + 2), ψ(t))

is therefore a curve in Sa.

To compute multiples of the point corresponding to Ca we use an equation in Weier-

strass form, which we already have found over Q(λ) in (15) so it is simply a matter of

replacing λ by 4t/(t2 + 2) in (15). The resulting equation is precisely the one given in (7)

in Chapter 1, and Ca corresponds in the new coordinates (u, v) to the point PC given in

the same section.
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Corollary 1.2.3 proves that PC has infinite order in Eλ(Q(t)) and this implies that the

subgroup generated by Ca in Eλ(Q(t)) corresponds to an infinite family of curves lying in

Sa each mapping 2− 1 to the λ-line through σ, and parametrized by rational functions in

Q(t). See figure 7.

This was seen in 1.2.5 to imply that the set of rational points in Sa is Zariski dense.

Regarding the geometry behind the situation, it should be noted that it would have

been convenient (geometrically) to work with projective coordinates under which σ takes

the form2

σ : S → P1

[a : b : c : y] 7→ [a : b]

but the complications of dealing in depth with projective schemes refrained us from en-

gaging on writing the theory in this setting with the time restrains we had. Note that σ

would no longer be a morphism as there is a point [a : b : c : y] = [0 : 0 : 1 : 0] where it

is not defined. To define the fibration everywhere we have to blow up the surface at that

point.

2Remember that λ = b/a
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Figure 7: Points on Eλ(Q(t)) correspond to curves in Sa
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Chapter III

K3 SURFACES

In this chapter we will take a closer look at weighted projective surfaces defined by equa-

tions of the form Y 2 = F (A,B,C) in P(1, 1, 1, 3) with coordinates1 A,B,C, Y such as

those related to 3-parameter tetrahedra. Our focus will be on smooth surfaces of this

form, which implies that the results will not be directly applicable to the surfaces related

to tetrahedra as these are all singular. We will prove that any smooth surface in P(1, 1, 1, 3)

given by an equation of the form Y 2 = F (A,B,C) is a K3 surface. As will be seen, and

even though very little is known about the arithmetic of K3 surfaces, this will give some

insight on the arithmetic properties that could be expected from the surfaces related to

3-parameter tetrahedra.

3.0.1 Theorem. Let X be a smooth weighted projective surface defined by

X : Y 2 = F (A,B,C)

in weighted projective space P(1, 1, 1, 3) with coordinates A,B,C, Y . Then KX = 0, where

KX is the canonical class in the Picard Group of X.

Proof. We will prove that the divisor of the 2-form

ω =
A3

Y
d

(
B

A

)
∧ d
(
C

A

)
is the zero divisor. We first take a look at the affine part of the surface A 6= 0 using affine

coordinates b = B/A, c = C/A, y = Y/A3. The equation for this affine part of X is given

by

XA : y2 = f(b, c)

1We will use capital letters for the projective coordinates since we will be using affine coordinates
extensively.

36



where f(b, c) = F (1, b, c), and ω takes the form

ω =
1
y
db ∧ dc.

Let P = (b, c, y) = (r, s, t) be a point on XA. There are two cases to consider depending

whether or not t is equal to 0.

If t 6= 0, then by the equation for XA we have

y2 − t2 = f(b, c)− t2

= (f(b, c)− f(r, s)) + (f(r, s)− t2)

= f(b, c)− f(r, s)

since P is a point of XA and so f(r, s)−t2 = 0. The expression in the last equality is in the

ideal 〈b− r, c− s〉 since it vanishes when b = r and c = s. Since t 6= 0, we can invert y+ t

in the local ring at P , and since y2− t2 = (y+ t)(y− t), it follows that y− t ∈ 〈b− r, c− s〉
in the local ring at P . This implies that b− r and c− s are local parameters at P as the

maximal ideal at P is generated by b− r, c− s and y− t, and therefore, by the above, by

just b− r and c− s. Therefore

ω =
1
y
db ∧ dc =

1
y
d(b− r) ∧ d(c− s)

has no poles or zeros at P .

If t = 0 then f(r, s) = 0, and the smoothness of XA implies that one of fb(r, s) or

fc(r, s) is non zero. Suppose without loss of generality that fc(r, s) 6= 0. By the equation

for XA we have

y2 = f(b, c)

= f(b, c)− f(r, s)

= (b− r)g(b, c) + (c− s)h(b, c)

for some g, h ∈ k[b, c] as f(b, c) − f(r, s) vanishes when b = r and c = s. Moreover, it

can bee seen that h(r, s) = fc(r, s) 6= 0 by differentiating the equation f(b, c) − f(r, s) =

(b− r)g(b, c) + (c− s)h(b, c) with respect to c and evaluating at (r, s). This implies that y

and b− r are local parameters at P since c− s ∈ 〈y, b− r〉 in the local ring at P as h(b, c)

does not vanish at P and so is invertible. Moreover, by the equation of XA we have

2ydy = d(f(b, c)) = fbdb+ fcdc
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and so,

dc =
2y
fc
dy − fb

fc
db.

Therefore,

ω =
1
y
db ∧ dc =

2
fc
db ∧ dy =

2
fc
d(b− r) ∧ dy

which implies that ω has no poles or zeros at P in this case either.

The previous computations imply that there is no contribution to the divisor of ω in

the affine part A 6= 0 as ω has no zeros or poles at any point.

To finish the proof we have to see that there is no contribution of A = 0, and for this

we take a look at another affine part of X. Let XB be the affine part of X of points

satisfying B 6= 0. The affine part of A = 0 in XB is given by a′ = 0, and the equation of

XB is given by

XB : y′2 = g(a′, c′)

with affine coordintes a′ = A/B, c′ = C/B, y′ = Y/B3 where g(a′, c′) = F (a′, 1, c′). In

this affine part ω takes the form

ω =
a′3

y′
d

(
1
a′

)
∧
(
c′

a′

)
=
−1
y′

da′ ∧ dc′,

since d(1/a′) = −(1/a′)2da′ and d(c′/a′) = (1/a′)2(a′dc′ − c′da′).
Let P = (a′, c′, y′) = (0, s, t) be a point on XB with A = 0. From the equation of XB

we have

y′2 − t2 = g(a′, c′)− t2

= (g(a′, c′)− g(0, s)) + (g(0, s)− t2)

= g(a′, c′)− g(0, s),

where last expresion is in the ideal 〈a′, c′− s〉 since it vanishes for a′ = 0 and c′ = s. This

implies that if t 6= 0 then y′− t ∈ 〈a′, c′− s〉 in the local ring at P since y+ t is invertible,

and so a′ and c′ − s are local parameters at P . Moreover, since there are at most deg g

points on a′ = 0 satisfying y′ = 0, we have found local parameters for most of the points

on the line defined by a′ = 0 in XB. Since

ω =
1
y′
da′ ∧ dc′ = 1

y′
da′ ∧ d(c′ − s),

this implies that ω has no poles or zeros for any P on a′ = 0 with t 6= 0 and so there is no

contribution of A = 0 to the divisor of ω.

Therefore, KX = 0 as stated. �
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The fact that KX = 0 implies that the Kodaira dimension of a smooth projective

surface in P(1, 1, 1, 3) given by an equation of the form Y 2 = F (A,B,C) is zero. Since the

Kodaira dimension is a birational invariant, and the Kodaira dimension of P2 is −1, we

obtain the following corollary.

3.0.2 Corollary. If X is a smooth projective surface given by an equation of the form

Y 2 = F (A,B,C) in weighted projective space P(1, 1, 1, 3), then X is not parametrizable.

This gives some geometric reasons to believe that surfaces related to 3-parameter

tetrahedra are not parametrizable, even though none of these surfaces are smooth, so

there is some chance they could be. In fact, as was stated in the introduction, the surfaces

related to cases 2 and 8 have been proved to be parametrizable over Q. The nature of the

singularities of these surfaces therefore plays a very important role.

If KY can be proved to be zero for a minimal non singular model Y of the surfaces

of cases 5 and 6, this would imply that they are not parametrizable, so in some sense the

results obtained in Chapter 1 are the best one can obtain regarding the nature of the set

of its rational points (namely, that the set of rational points is Zariski dense). The nature

of the singularities of the surfaces for cases 5 and 6 seems to indicate that this is in fact the

case. This could be proved by finding a non singular model Y of the surfaces by blowing

up the surfaces at the singular points and then checking that there is no contribution

to KY coming from the exceptional divisors. However, these computations will not be

undertaken in this thesis.

We will finish our analysis of smooth surfaces of the form Y 2 = F (A,B,C) by proving

that they are K3 surfaces. We have already done part of the work as by definition a K3

surface is a smooth projective irreducible surface for which KX = 0 and H1(X,OX) = 0.

We begin with a lemma.

3.0.3 Lemma. The Euler characteristic χ(OX) of the structure sheaf OX of a smooth

projective surface X given by an equation of the form Y 2 = F (A,B,C) in P(1, 1, 1, 3) is

2.

Proof. We will prove this with the use of the Hilbert polynomial of X (see [Har77], Section

I.7). It is known that if H(d) is the Hilbert polynomial of a smooth projective variety, the

Euler charactaristic of the structure sheaf of the variety is equal to H(0). In the graded

ring k[A,B,C, Y ]/〈Y 2 − F (A,B,C)〉 with A,B,C of weight 1 and Y of weight 3 every
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element can be expressed express as

G(A,B,C) + Y ·H(A,B,C)

where G is homogeneous of degree d and H is homogeneous of degree d− 3 since we can

replace all the even powers of Y by an appropriate power of F (A,B,C). Moreover, since

the dimension as a k-vector space of the homogeneous polynomials of degree d in the

variables A,B,C can be seen to be equal to f(d) =
(
d+2
2

)
, we obtain that the dimension

of the weighted homogeneous elements of weight d > 3 in k[A,B,C, Y ]/〈Y 2−F (A,B,C)〉
is given by

f(d) + f(d− 3) = d2 + 2.

Therefore, H(d) = d2 + 2 and χ(OX) = H(0) = 2 as stated. �

3.0.4 Theorem. Any smooth projective surface X given by an equation of the form Y 2 =

F (A,B,C) is a K3 surface.

Proof. It only remains to prove that H1(X,OX) = 0. For this we will prove that

dimkH
1(X,OX) = 0. Let hi(F) =dimkH

i(X,F) for any sheaf F of OX -modules, let

χ(OX) be the Euler characteristic of the structure sheaf OX of X, and let ωX be the

canonical sheaf of X. We have,

χ(OX) =
∞∑
i=0

(−1)ihi(OX)

= h0(OX)− h1(OX) + h2(OX)

= h0(OX)− h1(OX) + h0(ωX)

= 2h0(OX)− h1(OX)

= 2− h1(OX)

where the second equality follows form Grothendiek’s vanishing theorem, the third form

Serre Duality, the fourth from the fact that KX = 0 as this implies that ωX ∼= OX , and

the fifth since X is connected and projective which implies h0(OX) = 1. By Lemma 3.0.3

we have χ(OX) = 2, and so h1(OX) = 0. �
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Appendix A

CURVES OF THE FORM Y 2 = A + BX + CX2 + DX3 + EX4

A.1 Theorem. Any curve defined over k by an equation of the form y2 = f(x) with

f(x) ∈ k[x] of degree 4 with a root in k and no repeated roots over k̄ is an elliptic curve

over k, and the change of variables

u =
β

x− α

v = u2y =
β2y

(x− α)2

where α, β ∈ k, f(α) = 0 and β 6= 0 transforms the equation of the curve to v2 = g(u)

with g ∈ k[u] of degree 3 with no repeated roots over k̄.

Proof. Since f(α) = 0 we have

f(x) = a1(x− α) + a2(x− α)2 + a3(x− α)3 + a4(x− α)4

for some ai ∈ k. Now, u = β/(x− α) implies x = α+ β/u and so

y2 = f(α+ β/u)

= a1(β/u) + a2(β/u)2 + a3(β/u)3 + a4(β/u)4.

Multiplying this equation by u4 we obtain

(u2y)2 = a1βu
3 + a2β

2u2 + a3β
3u+ a4β

4,

and finally setting v = u2y gives

v2 = g(u) = βa1u
3 + a2β

2u2 + a3β
3u+ a4β

4.

To see that the curve is elliptic we only have to check that g has no repeated roots.

By hypothesis, f has no repeated roots and so f and f ′ have no common root. Therefore,
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since g(u) = u4f(α+ β/u), we have g′(u) = u2(4uf(α+ β/u)− f ′(α+ β/u)). Now, u = 0

is not a root of g as otherwise a4 = 0 and this would contradict the asumption that f is

of degree 4. If γ is a root of g(u) then f(α+ β/γ) = 0 and the expresion for g′(u) implies

g′(γ) = γ2f ′(α + β/γ) 6= 0 since f and f ′ have no common roots. Therefore, g has no

repeated roots. �

Note from the proof that by the choosing β cleverly we can make the resulting cubic

in u be monic, giving an equation in Weierstrass form.
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Appendix B

TRANSFORMATION OF CASE 6

The surface from Case 6 is given by

y2 = 2(a2 + b2 − c2)(a2 − b2 + c2)(−a2 + b2 + c2).

Setting λ = c/(a− b), x1 = a/b and y1 = y/b2(a− b) we obtain

y2
1 = f(x1)

where f(x1) ∈ Q(λ)[x1] is given by

f(x1) = 2[x2(1− λ2) + 2λ2x1 + 1− λ2][x1(1 + λ2)− (λ2 − 1)][x1(λ2 − 1)− (λ2 + 1)]

The change of variables

x2 =
1

x1 − α
, y2 = x2

2y1

where α = (λ2 − 1)/(λ2 + 1) taking the point (x1, y1) = (α, 0) to infinity as seen in

Appendix A gives an equation of the form

y2
2 = f2(x2) (17)

where f2(x2) = x4
2f1(α+ β/x2) is of degree 3 with leading coeficient

c = −16λ2(λ2 − 1)2/(λ2 + 1)2.

To remove this coefficient multiply (17) by (λ2 + 1)6c2 and rewrite in terms of the new

variables

x3 = (λ2 + 1)2cx2, y3 = (λ2 + 1)3cy2

Finally, renaming u = x3 and v = y3 gives

v2 = u3 + a1(λ)u2 + a2(λ)u+ a3(λ)
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where

a1(λ) = 22(λ2 + 1)(λ6 − 15λ4 + 7λ2 − 1)

a2(λ) = −22(λ2 − 1)(5λ2 − 1)(λ2 + 1)4

a3(λ) = −29(λ2 − 1)2(λ2 + 1)7.
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Appendix C

SOME RESULTS FROM COMMUTATIVE ALGEBRA

C.1 Proposition. Let R be a commutative ring with identity, S1 and S2 be R-algebras,

and I1, I2 be ideals of S1 and S2 respectively. Then

S1/I1 ⊗R S2/I2 ∼= (S1 ⊗R S2)/I

where I = I1⊗R S2 +S1⊗R I2 is the ideal generated by I1⊗R S2 and S1⊗R I2 in S1⊗R S2.

Proof. We will drop the subscript from ⊗R. The map

S1/I1 × S2/I2 → (S1 ⊗ S2)/I

([s1], [s2]) 7→ [s1 ⊗ s2]

is well defined since if [s1] = [t1] and [s2] = [t2] then tk = sk+ ik where ik ∈ Ik for k = 1, 2.

Therefore,

([t1], [t2]) 7→ [(s1 + i1)⊗ (s2 + i2)]

= [s1 ⊗ s2 + s1 ⊗ i2 + i1 ⊗ s2 + i1 ⊗ i2]

= [s1 ⊗ s2]

as each of the other terms belong to I. Since this map is also R-bilinear, it induces a

homomorphism of R-modules

σ : S1/I1 ⊗ S2/I2 → (S1 ⊗ S2)/I

[s1]⊗ [s2] 7→ [s1 ⊗ s2]

that is also an R-algebra homomorphism.

Conversely, the map defined by

S1 × S2 → S1/I1 ⊗ S2/I2

(s1, s2) 7→ [s1]⊗ [s2]
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is R-bilinear, so it induces an R-module homomorphism

φ : S1 ⊗ S2 → S1/I1 ⊗ S2/I2

s1 ⊗ s2 7→ [s1]⊗ [s2]

that is also a ring homomorphism. Since I ⊂ Ker φ, there is an induced homomorphism

φ̂ : (S1 ⊗ S2)/I → S1/I1 ⊗ S2/I2

[s1 ⊗ s2] 7→ [s1]⊗ [s2].

The isomorphism follows as σ and φ̂ are inverses to each other. �

C.2 Proposition. Let f ∈ k[x1, . . . , xn] and t ∈ k. Then

k[x1, . . . , xn]/(f)⊗k[xn] k[xn](xn−t)/(xn − t) ∼= k[x1, . . . , xn−1]/(f(x1, . . . , xn−1, t))

where k[xn](xn−t) is the localization of k[xn] at (xn − t).

Proof. We will prove the result for n = 2, the proof of general case is similar. Let f ∈ k[x, y]

and consider the map k[y]→ k[y](y−t)/(y − t) sending p(y) 7→ [p(y)/1]. The kernel of this

map is (y− t) since (y− t) is contained in the kernel, and (y− t) and is a maximal proper

ideal so it equals the kernel. Therefore,

k[y]/(y − t) ∼= k[y](y−t)/(y − t)

as k[y]-algebras by the map induced by k[y]→ k[y](y−t)/(y − t) and so,

k[x, y]/(f)⊗k[y] k[y](y−t)/(y − t) ∼= k[x, y]/(f)⊗k[y] k[y]/(y − t).

We will drop the subscript of ⊗k[y] form now on. By Proposition C.1, the tensor

product on the right is isomorphic to

(k[x, y]⊗ k[y])/I

where I is the ideal generated by f ⊗ 1 and 1 ⊗ (y − t) = (y − t) ⊗ 1 in k[x, y] ⊗ k[y].

However, k[x, y]⊗ k[y] ∼= k[x, y] and so

(k[x, y]⊗ k[y])/I ∼= k[x, y]/(f, y − t).
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Consider now the surjective map

φ : k[x, y] → k[x]/(f(x, t))

p(x, y) 7→ [p(x, t)].

Clearly (f, y− t) ⊂ Ker φ. Conversely, if p(x, y) ∈ Ker φ, then p(x, t) = h(x)f(x, t) for

some h(x) ∈ k[x] and so

p(x, y)− h(x)f(x, y) ∈ k[x, y]

vanishes at y = t. This implies that p(x, y) − h(x)f(x, y) ∈ (y − t), that is, p(x, y) ∈
(f, y − t). Therefore, Ker φ = (f, y − t) and so

k[x, y]/(f, y − t) ∼= k[x]/(f(x, t))

as stated. �

C.3 Proposition. Let f ∈ k[x1, . . . , xn]. There is an isomorphism

k[x1, . . . , xn]/(f)⊗k[xn] k(xn) ∼= k(xn)[x1, . . . , xn−1]/(f).

Proof. As with the previous proof, let n = 2. The proof of general case is similar. Let the

f ∈ k[x, y] with f /∈ k[y]. The map

φ : k[x, y]/(f)× k(y) → k(y)[x]/(f)

([p(x, y)], φ(y)) 7→ [p(x, y)φ(y)].

is well defined and bilinear over k[y]. Therefore it induces a k[y]-algebra homomorphism

φ : k[x, y]/(f)⊗ k(y) → k(y)[x]/(f)

[p(x, y)]⊗ φ(y) 7→ [p(x, y)φ(y)],

Now, every element in k(y)[x] can be written in the form q(x, y)/r(y) for some q(x, y) ∈
k[x, y] and r(y) ∈ k[y], and every element in k[x, y]/(f)⊗ k(y) can be written in the form

[p(x, y)]⊗ 1/h(y) for some p(x, y) ∈ k[x, y] and h(y) ∈ k[y]. If [p(x, y)]⊗ 1/h(y) ∈ Ker φ,

then
p(x, y)
h(y)

=
q(x, y)
r(y)

f(x, y)

for some q(x, y) ∈ k[x, y] and r(y) ∈ k[y] and so,

r(y)p(x, y) = h(y)q(x, y)f(x, y)
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in k[x, y]. Therefore,

[p(x, y)]⊗ 1
h(y)

= [p(x, y)]⊗ r(y)
r(y)h(y)

= [r(y)p(x, y)]⊗ 1
r(y)h(y)

= [h(y)q(x, y)f(x, y)]⊗ 1
r(y)h(y)

= [0]⊗ 1
r(y)h(y)

= 0

and so φ is injective. Since φ is also surjective,

k[x, y]/(f)⊗ k(y) ∼= k(y)[x]/(f)

as stated. �
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