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Definition 1. A Quadratic Form over a ring R is a function

Q(~x) =
∑

cijxixj

with cij ∈ R. We can write this as

Q(~x) =
1

2
~xtA~x

with A a symmetric n × n matrix with entries in R (this is why the 1/2 is
there). This matrix is called the hessian matrix. Note that it has the second
order partials. The Gram matrix of Q is 1

2A which is in Mn( 1
2R

n).

Example 2. x2 + xy + y2 can be written as

1

2

[
x y

] [2 1
1 2

] [
x
y

]
.

Main Question: What values of R are represented by Q? i.e., what is Q(Rn)?

Notions of Equivalence The following are the different ways to view equiv-
alence

• We consider quadratic forms Q(~x) =
∑

cijxixj up to linear invertible
changes of coordinates of Rn. We denote the equivalence by Q1 ∼R Q2.

• Q1 and Q2 with gram matrices A1 and A2 are equivalent if and only if
there is a U ∈ GLn(R) s.t. U tA1U = A2.

These two are equivalent because invertible linear changes of coordinates change
the Gram matrix in precisely that way. e.g. If ~x = U~y, then ~xtA~x = Q(~x) =

Q(U~y) = ~ytU tAU~y, so the Gram matrix for Q in ~y coordinates is precisely
U tAU .
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The Determinant of a Quadratic Form We would like to define the de-
terminant of Q as the determinant of its Hessian matrix, but up to equivalence
this is not well defined. However, if Q1 and Q2 are equivalent, then their de-
termiants differ by a square in R. Thus, we can define the determinant of Q
as

det(Q) = [det(A)] ∈ R∗/(R∗)2 ∪ {0}.

Example 3. If R = Z, then Z∗ = {±1} and so (Z∗)2 = {1} and so the
determinant of a quadratic form is well defined as an element of Z.

Example 4. If R = C, then C∗ = C− {0} and so (C∗)2 = C∗ and so the only
possibilities for the determinant of a quadratic form in this case are 0 or 1.

Direct Sums Let Q1and Q2 be forms in n and m variebles respectively. The
direct sum Q1⊥Q2 is to the from in n + m variables defined by

Q1⊥Q2(~x, ~y) = Q1(~x) + Q2(~y).

Structure Theorem over fields

Definition 5. We say Q is non-degenerate if det(Q) 6= 0.

Theorem 6. If R = k is a field, then det(Q) = 0 implies that Q ∼k Q′⊥(0x2)

Proof. Consider the associate bilinear form to Q: B(~x, ~y) = ~xtA~y. Since detQ =
0, then there is an ~v 6= ~0 s.t. ~vtA =

[
0 . . . 0

]
. So, if we chose a basis with ~v

as a first vector, then in this basis the matrix takes the form
0 ∗ . . . ∗
0
... A′

0

 ,

but since the matrix is symmetric, then it actually looks like
0 . . . 0
...

A′

0

 .

This A′ defines Q′ in the statement.

By this theorem, we may assume that any quadratic fomr is non-degenerate,
since we can always split it like above until we get something which is non-
degenerate.
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Equivalence via symmetric elementary operations We can understand
the orbit of A under U · A = U tAU for U ∈ GLn by decomposing U into
elemetary operations (any matrix in GLn is the product of elementary matrices).
Elementary operations correspond to elementary colums operation on the right
side, and elementary row operations on the left side in

~xtA~x.

Example 7. Let Q = x2 + 2xy + y2 with associate Gram matrix

A =

[
1 1
1 1

]
.

Change it by row operations, but every row operation needs to be acompanied
by the equivalent column operation. If we rubtract the first row from the second,
and then do the same with the comuns you get:[

1 1
1 1

]
99K

[
1 1
0 0

]
99K

[
1 0
0 0

]

So, Q ∼ u2, where u is a linear function of x and y which was obvious from the
beginning! Q = (x + y)2.

Theorem 8. Any quadratic form over a field k (char k 6= 2) can be diagonalized.

Proof. Assume Q is non-degenerate and choose a basis. Let a be first element
of the diagonal 

a ∗ . . . ∗
∗
... ∗
∗

 .

If a 6= 0, then we with row and column operations we can make all the other
entries in the first row and column zero

a 0 . . . 0
0
... ∗
0

 .

If a = 0, then there is a nonzero entry in the first row (by non-degeneracy)
0 . . . ∗ . . .
...
∗ ∗
...
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and adding this column to the first column (and doing the corresponding row
opperation), then we get a matrix with nonzero first element in the diagonal,
and we can do what we did before in the case a 6= 0.

We have thus proved that we can find always modify a basis to one in which Q
has the form 

a 0 . . . 0
0
... A
0


for some a 6= 0 and some non-degenerate matrix A. The process can be contin-
ued until one obtains a diagonal matrix with nonzero entries.

Corollary 9. Any quadratic form over C is equivalent to one of the form x2
1 +

. . . + x2
n, and any quadratic form over R is equivalent to one of the form x2

1 +
. . . + x2

n − (y21 + . . . + y2m).

Proof. After diagonalizing one can rescale the basis elements and this can change
the diaginal entries up to squares. See the example below.

Example 10. Over R we have

4x2 − 5y2 ∼ (2x)2 − (
√

5y)2 = u2 − v2,

while over C we have

4x2 − 5y2 ∼ (2x)2 + (i
√

5y)2 = u2 + v2.

Over Q the best one can do is

4x2 − 5y2 ∼ (2x)2 − 5(y)2 = u2 − 5v2.

Theorem 11. If Q is non-degenerate, and Q(~v) = 0 with ~v 6= ~0, then

Q ∼ xy⊥Q′

Proof. If we take ~v as the first vector of a basis and let B be the asociated
bilinear form. Since Q is non-degenerate then B(~v, ·) is not identically zero and
so, there is a ~w withB(~v, ~w) = a 6= 0. Taking ~w/a as part of the second element
of the basis we get a matrix for Q of the form

0 1
∗

1 ∗

∗ ∗

 .

Moreover, by changing ~w/a to b~v + ~w/a for some b, we can make sure that the
unknown entry in the 2 by 2 matrix on the top left is 0 (this will use the fact
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that Q(~v) = 0). By further scaling this new second vector we obtain a matrix
of the form 

0 1
∗

1 0

∗ ∗

 .

Finally, using this form with row and column operations we can make sure that
it looks in the form 

0 1 0 . . . 0
1 0 0 . . . 0
0 0 ∗ . . . ∗
...

...
...

. . .
...

0 0 ∗ . . . ∗

 .

Definition 12. We say Q is isoptropic if there is a ~v 6= ~0 with Q(~v) = 0. We
say is is anisotropic if is is not isotropic.

Definition 13. We say Q is universal if Q(Rn) = R (as sets).

Theorem 14. If R = k is a field, then H (the form 2xy) is universal.

Proof. Simple.

Theorem 15. If R = R then Q is universal iff it represents both positve and
negative numbers.

Proof. We may assume it is not degenerate, and so after diagonalizing it its
matrix can be brought to the form[

In 0
0 −Im

]
where In is the n× n identity matrix. Since the form represents both negative
and positive numbers we know that n,m ≥ 1. Thus Q has the subfrom x2 − y2

which is equivalent to xy and so represents all numbers.
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