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Abstract

Some notes on the analogy between number theory over Z and Fq[t] and an attempt to translate a
paper of Gouvêa and Mazur on ranks of quadratic twists of elliptic curves over Q to elliptic curves over
Fq(t).
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1 Introduction

Our RTG paper is based on the 1991 article of Mazur and Gouvêa [GM91] investigating ranks of quadratic
twists of elliptic curves over Q. They, assuming the parity conjecture, give asymptotic estimates for a lower
bound for the density of quadratic twists with rank ≥ 2 of a fixed elliptic curve E. Our final goal is to obtain
analogues of these results for elliptic curves over the function field Fq(t). Our purpose in this paper, and
the subject of our RTG project was to translate the statements and give a rough sketch of what we need
to prove, and determine the exact statement that one can prove using the techniques of the original article.
We have not yet been fully successful in this goal.

We start by giving an overview of the analogies between the arithmetic of function fields and the arithmetic
of the integers. We then go on to give the translation for the statements of the article following the original
structure. There are some proofs that we have not yet translated (these are marked as omitted in this paper)
and we have not translated the statements of Sections 6 through 8 of the paper except the main result of
Section 8.

In this paper we assume basic knowledge of elliptic curves as can for example be found in Silverman’s text
as well as abstract algebra as taught for example in a first year graduate course. We develop or reference the
number theory over Fq[t] that we require, but of course knowing the parallel theory over Z would be helpful.

2 Number theory over Fq[t]

2.1 The basic analogy

There are a number of surprising analogies between on the one hand, the integers Z and the rational numbers
Q and on the other hand, Fq[t], a one variable polynomial ring over a finite field, and its field of fractions
Fq(t). The analogies are so far reaching, that there is a whole area in number theory (Function Field
Arithmetic) which focuses on investigating the analogue of every applicable number theoretic statement
about the rationals. This paper is a particular example of this, where we are translating a paper about
Elliptic curves over the rationals into its analogue in the arithmetic of function fields. We will go over the
basic details of this correspondence.

First of all, both Z and Fq[t] are PIDs and so we have unique factorization and the notion of prime or
irreducible elements in both. Moreover the notion of positive integer has an analogue in Fq[t] given by the
notion of monic polynomial. This analogy extends to the notion of prime nicely, giving us an analogy between
positive primes in Z and monic irreducible polynomials. Specifically, just like any prime in Z is associate
to a unique positive prime (the numbers which we usually refer to as prime), any irreducible polynomial in
Fq[t] is associate to a unique monic irreducible polynomial.

There is also an analogue of the notion of absolute value: Define |0| = 0 and for f ∈ Fq[t] \ {0} define |f | =
qdeg f . This has all the properties that an absolute value should have (non-negativity, positive definiteness,
multiplicativity and subadditivity). Moreover, we have the following fact which is clearly an analogue of
|Z/nZ| = |n|.

Proposition 2.1. |Fq[t]/(f)| = qdeg f .

Proof. By the division algorithm for Fq[t], any class in Fq[t]/(f) has a unique representative of degree < deg f ,
and there are qdeg f polynomials in Fq[t] of degree < deg f .

The following table summarizes the ‘dictionary’ we have built up so far.

3



Elementary Number Theory Function Field Arithmetic
Z Fq[t]
Q Fq(t)

positive monic
prime number monic irreducible

n ≤ x qdeg(f) ≤ x

2.2 Recreating some number theory

In this section we develop some analogues of results of elementary number theory up to quadratic reciprocity
following [Ros02].

If f = pe11 . . . pett is the factorization of f into powers of distinct irreducibles then by the Chinese Remainder
Theorem

(Fq[t]/(f))× ∼= (Fq[t]/(pe11 ))× × · · · × (Fq[t]/(pett ))×.

Proposition 2.2. Let p be an irreducible polynomial. Then (Fq[t]/(p))× is cyclic of order |p| − 1. Also
(Fq[t]/(pe))× has order |p|e−1(|p| − 1).

Proof. Since p is irreducible, Fq[t]/(p) is a field so the first result follows from the fact that a finite subgroup
of the multiplicative group of a field is cyclic. For the second part we know that the ideals of Fq[t]/(pe)
correspond to the ideals of Fq[t] dividing (pe) so there is a unique maximal ideal pFq[t]/(pe). Then Fq[t]/(pe)
is a local ring so its units are everything outside the maximal ideal. That is,

|(Fq[t]/(pe))×| = |(Fq[t]/(pe)| − |pFq[t]/(pe)| = |p|e − |p|e−1

as required.

Then we can define an analogue of the Euler φ function by Φ(f) = |(Fq[t]/(f))×|. By the discussion above,
if f = pe11 . . . pett then

Φ(f) =
∏∣∣(Fq[t]/(peii ))×

∣∣ =
∏
|pi|ei−1(|pi| − 1) = |f |

∏(
1− 1
|pi|

)
.

We can also think of Φ(f) as the number of polynomials of degree less than deg(f) which are relatively prime
to f .

Proposition 2.3. If f is a nonzero polynomial and a is relatively prime to f then

aΦ(f) ≡ 1 (mod f).

Proof. We can consider a ∈ (Fq[t]/(f))× which is a group of order Φ(f). Thus aΦ(f) = 1 which implies our
desired result.

This proposition together with the fact that Φ(p) = |p| − 1 implies the following analogue of Fermat’s little
theorem:

Corollary 2.4. Let p ∈ Fq[t] be irreducible and a a polynomial not divisible by p. Then

a|p|−1 ≡ 1 (mod p).
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Next we prove an analogue of Wilson’s theorem.

Proposition 2.5. Let p be an irreducible polynomial of degree d. Then

x|p|−1 − 1 ≡
∏

0≤deg(f)<d

(x− f) (mod p).

Proof. The product is over a set of representatives for (Fq[t]/(p))×. Every element of this set is a zero of
both the right hand side (by construction) and also the left hand side (by our Fermat’s little theorem). Thus
the difference of both sides is a polynomial of degree less than |p| − 1 which has at least |p| − 1 roots so is
identically zero.

Putting x = 0 in this proposition we obtain∏
0≤deg(f)<d

(−f) ≡ −1 (mod p)

which, noticing that (−1)|p|−1 = 1, implies that∏
0≤deg(f)<d

f ≡ −1 (mod p). (2.1)

Corollary 2.6. Let d divide |p| − 1. Then the congruence xd = 1 has exactly d solutions in (Fq[t]/(p))×.

Proof. Since d divides |p| − 1 it follows that xd − 1 divides x|p|−1 − 1. But the latter polynomial splits as a
product of linear distinct factors by the proposition so xd − 1 does as well.

Now we move on to some discussion of d-th power residues. We say that a polynomial a relatively prime to
f is a d-th power residue modulo f if the equation xd ≡ a (mod f) is solvable in Fq[t].

Proposition 2.7. Let p be irreducible and a not divisible by p. Assume d divides |p|−1. Then the congruence
xd ≡ a (mod p) is solvable if and only if a(|p|−1)/d ≡ 1 (mod p).

Proof. Firstly, if b is a solution to xd ≡ a (mod a) then a(|p|−1)/d ≡ b|p|−1 ≡ 1 (mod p) by our version of
Fermat’s little theorem.

Conversely, consider the d-th power map from (Fq[t]/(p))× to itself. Since this group contains all the d-th
roots of unity, the kernel of the map has order d. Thus the image, the d–th powers has order (|p| − 1)/d.
Then each of these d-th powers satisfies the polynomial x(|p|−1)/d − 1 = 0 in the field Fq[t]/(p) and thus the
set of d-th powers is exactly the zeros of this polynomial.

Next notice that for d dividing q − 1, a(|p|−1)/d is an element of order dividing d in Fq[t]/(p). So it is a
solution of xd = 1 in Fq[t]/(p) and xd − 1 divides xq − x and therefore a(|p|−1)/d is congruent to a unique
element of F×q modulo p.

Definition 2.8. Let d be a number dividing q− 1. If p doesn’t divide a let (a/p)d be the unique element of
F×q such that

a
|p|−1
d ≡

(
a

p

)
d

(mod p).

This is the d-th power residue symbol; for d = 2 this is the analogue of the Legendre symbol.
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Proposition 2.9. The d-th power residue symbol has the following properties:

(i)
(
a
p

)
=
(
b
p

)
if a ≡ b (mod p).

(ii)
(
ab
p

)
=
(
a
p

)(
b
p

)
.

(iii)
(
a
p

)
= 1 iff xd ≡ a (mod p) has a solution.

(iv) For any ζ ∈ F×q of order dividing d, there exists a ∈ Fq[t] such that
(
a
p

)
= ζ.

Proof. We prove each claim separately.

(i) The definition only depends on a mod p.

(ii) We have (
ab

p

)
≡ (ab)(|p|−1)/d ≡ a(|p|−1)/db(|p|−1)/d ≡

(
a

p

)(
b

p

)
(mod p)

and if two constants are congruent modulo p they must be equal.

(iii) This is Proposition 2.7.

(iv) Consider the map Fq[t]/(p)→ Fq that sends a 7→ (a/P )d. From part (iii), the kernel of this map is the
d-th powers, and there are (|p| − 1)/d of these (consider the dth power map from (Fq[t]/(p))× to itself
and use the fact that this set contains d dth roots of unity). Thus by the first isomorphism theorem
the image of this map has size d, which implies the desired result because F×q is cyclic.

Theorem 2.10 (d-th Power Reciprocity Law). Let p, r be monic irreducible polynomials of degree δ and ν
respectively. Then (

r

p

)
d

= (−1)
q−1
d δν

(p
r

)
d
.

Proof. We prove the result for d = q − 1 and the result for general d follows upon raising both sides to the
power of (q − 1)/d because(

r

p

)(q−1)/d

q−1

≡ (r
|p|−1
q−1 )

q−1
d ≡ r

|p|−1
d ≡

(
r

p

)
d

(mod p)

and constants that are equivalent modulo p are equal.

Let α be a root of p. Then p is the minimal polynomial of α and Fq(α)/Fq is a Galois extension so we must
have

p(t) = (t− α)(t− αq) · · · (t− αq
δ−1

).

Similarly if β is a root of r we must have

r(t) = (t− β)(t− βq) · · · (t− βq
ν−1

).

Let F′ be a finite field containing Fq, α and β and now consider f(t) ∈ F′[t]. We have f(t) ≡ f(α) (mod t−α)
and also f(t)q = f(tq).
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Then (
r

p

)
≡ r(t)(qδ−1)/(q−1) (mod p)

= r(t)(1+q+...+qδ−1)

= r(t)r(t)q · · · r(t)q
δ−1

≡ r(α)r(α)q · · · r(α)q
δ−1

(mod t− α).

We can repeat this argument to show this result modulo t − αqi for each i. This implies that it is true
modulo p.

Then we can expand each r(α) out to see that(
r

p

)
≡
δ−1∏
i=0

ν−1∏
j=0

(
αq

i

− βq
j
)

(mod p).

Once again, both sides are constants so this must be an equality. So(
r

p

)
=
δ−1∏
i=0

ν−1∏
j=0

(
αq

i

− βq
j
)

= (−1)δν
δ−1∏
i=0

ν−1∏
j=0

(
βq

j

− αq
i
)

= (−1)δν
(p
r

)
.

2.3 Other useful results

Our next result is a function field version of the well known fact that d(x) = o(xδ) for any δ > 0. The
template for this proof comes from [HW79].

Proposition 2.11. Let d(n) be the number of monic divisors of a polynomial n ∈ Fq[t]. Then d(n) =
o(qδ deg(n)) for any δ > 0.

Proof. Let δ > 0 and choose 0 < α < δ. We will prove that there exists a constant K such that
d(n)/qα deg(n) ≤ K. From this it will follow that d(n)/qδ deg(n) → 0 as deg(n)→∞.

Note that for only finitely many polynomials n ∈ Fq[t] do we have qα deg(n) < 2 since this condition imposes
a bound on the degree. Let C be the set of polynomials that satisfy this bound.

Now note that for any a,M ≥ 0 we have

a

Mαa
≤ 1
α log(M)

which follows directly from the fact log(x) ≤ x. We will use this with M = qα deg(n) giving

a

qα deg(n)a
≤ 1
α log(qdeg(n))

≤ 1
α log(q)

. (2.2)

Also note that if n /∈ C then qα deg(n) ≥ 2 and so for a ≥ 0 and an integer we have

1 + a

qα deg(n)a
≤ 1 + a

2a
≤ 1. (2.3)
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Take now any arbitrary n ∈ Fq[t] and factor it into monic irreducibles as n = α
∏
i p
ai
i where some of the pi

may be in C. By the bounds (2.2) and (2.3) we get

d(n)
qα deg(n)

=
∏
i

1 + ai
qα deg(pi)ai

≤
∏
pi∈C

1 + ai
qα deg(pi)ai

≤
∏
p∈C

(1 + 1/α log(q)).

If we denote this last term by K (note that it is independent of n), then we have d(n)
qα deg(n) ≤ K as desired.

The next result can be used to prove the analogue of the Prime number theorem but we merely require it
for an inequality later.

Proposition 2.12. Let Nd be the number of monic irreducible polynomials of degree d in Fq[t]. Then

qn =
∑
d|n

dNd.

Proof. See [Ros02].

The following analogue of Dirichlet’s theorem of primes in arithmetic progression was proven by Kornblum
before his untimely death in World War I.

Theorem 2.13. Let {a + mx} be an arithmetic sequence for a,m relatively prime polynomials. Then for
sufficiently large integer N , there is a monic irreducible p of degree N which lies in this arithmetic progression.

Proof. See [Ros02].

We now state and prove the analogue of Hensel’s lemma.

Lemma 2.14 (Hensel’s Lemma). Let f ∈ Fq[t][x], k ≥ 2 an integer and p ∈ Fq[t] be monic and irreducible.
If r is a solution of f(r) ≡ 0 (mod pk−1) and also f ′(r) 6≡ 0 (mod p), then there exists a unique monic
s ∈ Fq[t] with deg(s) < deg(p) such that

f(r + spk−1) ≡ 0 (mod pk).

i.e. a solution modulo pk−1 lifts uniquely to a solution modulo pk.

Proof. First note that we can write f(r+ s) = c0 + c1s+ c2s
2 + . . .+ cds

d with ci ∈ Fq[t]. Now setting s = 0
gives c0 = f(r) and taking the formal derivative and then setting s = 0 gives c1 = f ′(r). So we have

f(r + spk−1) = f(r) + f ′(r)spk−1 + c2(spk−1)2 + . . .

≡ f(r) + f ′(r)spk−1 (mod pk)

Now the solutions in the variable s to f(r) + f ′(r)spk−1 ≡ 0 (mod pk) are exactly the solutions in s to
sf ′(r) ≡ − f(r)

pk−1 (mod p) and with f ′(r) 6≡ 0 (mod p) there is a unique solution to this equation.
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3 Translation of the paper to Fq(t)

In this section we attempt to ‘translate’ the statements of Gouvêa and Mazur’s paper [GM91] to elliptic
curves over Fq(t) instead of Q. For simplicity, we assume that the characteristic of Fq is greater than 3.

3.1 Section 0: Some background

Definition 3.1. Given an elliptic curve E/Fq(t), for each monic irreducible p ∈ Fq[t] define the quantity fp
by

fp =


0, if E has good reduction at p,
1, if E has multiplicative reduction at p,
2, if E has additive reduction at p.

Define the conductor of E to be
C =

∏
p

pfp

where the product is taken over all monic irreducibles.

The quadratic Dirichlet character corresponding to the twist by squarefree D ∈ Fq[t] is χD, defined on monic
irreducible p ∈ Fq[t] by

χD(p) =


1, if D is a square in (Fq[t]/(p))×,
−1, if D is not a square in (Fq[t]/(p))×

0, if D is divisible by p.

and extended multiplicatively to monic polynomials. We have χD(p) =
(
D
p

)
, the d-th power residue symbol

with d = 2, and thus

χD

(∏
peii

)
=
∏(

D

pi

)ei
.

3.2 Section 1: Introduction

Let E be an elliptic curve over Fq(t) with good reduction at infinity. If E is given by the Weierstrass equation
y2 = x3 + ax+ b then the quadratic twist by a square-free polynomial D is ED given by Dy2 = x3 + ax+ b.

We have the following version of the parity conjecture from [Ulm08]:

Conjecture 3.2 (Parity Conjecture). Let E/Fq(t) be an elliptic curve with good reduction at infinity and
conductor C and let D be a square-free polynomial of even degree relatively prime to C. Then the ranks of
E and ED have the same parity if and only if χD(C) = 1.

We aim to prove the following theorem:

Theorem 3.3. Let E/Fq(t) be an elliptic curve with good reduction at infinity and a non-square conductor
and let

LE(x) = {square-free D of even degree such that qdeg(D) ≤ x and rank(ED) ≥ 2 and even}.

If the parity conjecture is true, then for any ε > 0, |LE(x)| ≥ x1/2−ε for sufficiently large x.
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3.3 Section 2: The square-free counting method

Proposition 3.4. If E/Fq(t) is an elliptic curve then there are only a finite number of square-free polyno-
mials D such that ED has a torsion point of order > 2.

Proof. Omitted.

The main difficulty in the proof of Theorem 3.3 is obtaining asymptotic bounds on the density of square-free
values of binary forms. Assuming these results we now give a proof of the theorem. The rest of the paper
will be devoted to obtaining the required results which can be seen in Section 3.9.

Proof of Theorem 3.3. Given E/Fq(t) with Weierstrass equation y2 = x3 + ax + b and conductor C, define
F (U, V ) = V · f(U, V ) where f(U, V ) = U3 + aUV 2 + bV 3.

Now for any pair of polynomials (u, v), if D = F (u, v) is a square-free polynomial then (X,Y ) = (u/v, 1/v2)
is an Fq(t) point on ED because DY 2 = F (u, v)/v4 = (u/v)3 + a(u/v) + b = X3 + aX + b.

Note that (X,Y ) is not of order two because Y 6= 0. We claim that there are only a finite number of pairs
(u, v) such that (X,Y ) is torsion. Indeed, by Proposition 3.4 there are only a finite number of D such that
ED has a torsion point of order > 2. Then for each such D there are only a finite number of torsion points
on ED (by the Mordell–Weil theorem over Fq(t) for example) and for each of these there are only a finite
number (at most 2) of pairs (u, v) that give such a point.

Now let Z be a real number and TE(Z) be the set of pairs of monic (u, v) with qdeg(u), qdeg(v) ≤ Z such that

(i) D = F (u, v) is a square free polynomial of even degree, relatively prime to M .

(ii) (X,Y ) = (u/v, 1/v2) is not a torsion point on ED.

(iii) (u, v) ≡ (a0, b0) mod M . (In Lemma 3.17 it is seen that this condition, for some a0, b0,M to be
specified later, implies that ED has even rank).

Now choose λ = q−
1
4 max{1,deg(a),deg(b)} and define a map ψ : TE(λ · x1/4)→ LE(x) by (u, v) 7→ D = F (u, v).

Then qdeg(D) = qdeg(F (u,v) = qdeg(vu3+av3u+bv4) ≤ qmax{1,deg(a),deg(b}λ4x = x. Also we have a non-torsion
point (X,Y ) on ED, and rank of ED is even and therefore ≥ 2 as required.

But this is precisely the set specified in Proposition 3.18 except for a finite number, k, of elements removed
(the only extra condition is (ii) above). Thus the cardinality of TE(λ·x1/4) is equal to N (λ·x1/4)−k ≥ c·x1/2

for some c and for x sufficiently large.

Next we show that fibers of ψ have cardinality bounded above by o(xε) for any ε > 0. Consider the (u, v)
solving D = vf(u, v). Specifying v means there are at most 3 different u’s satisfying this equation. But v is
a divisor of D so |ψ−1(D)| ≤ 3d(D) where d(D) is the number of monic divisors of D. But from Proposition
2.11 we know that d(D) = o(qdeg(D)ε) for all ε > 0, so for sufficiently large x we have |ψ−1(D)| ≤ c · xε and
therefore

|LE(x)| ≥ |TE(λx1/4)|
|ψ−1(D)|

≥ x1/2−ε.

3.4 Section 3: The square-free sieve

This section of the original paper explains the strategy of the proof.
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3.5 Section 4: Main terms and error terms

Let F (u, v) be a homogeneous polynomial of degree d ≥ 1 with coefficients in Fq[t]. We can write F (u, v) =
kurvs

∏
(u− αiv) with k ∈ Fq[t], r, s ∈ N ∪ {0}, αi 6= 0 ∈ Fq[t]. Now if r 6= 0 we can make a transformation

u 7→ u + αv and v 7→ v choosing α ∈ Fq[t] such that now r = 0. (There are only a finite number of bad
choices to avoid and there are infinitely many possible choices). Then we can make a transformation that
maps u 7→ u and v 7→ v + βu with β ∈ Fq[t] such that s = 0. So composing these two transformations we
get a linear transformation of determinant 1 defined over Fq[t].

Thus we may assume that the coefficients of ud and vd, call them l and m respectively, are nonzero. So
factor F (u, v) = l ·

∏
(u−αiv) over Fq(t) and then define ∆ = ml2d−1

∏
(αi −αj) where the product is over

all i 6= j. Then ∆ is in Fq[t] because
∏

(αi − αj) is a symmetric polynomial in the coefficients of F . Also ∆
is nonzero if and only if F is squarefree.

Suppose that F is squarefree and also that all irreducible factors of F are of degree ≤ 3. Fix a monic
polynomial M and two polynomials a0, b0 both relatively prime to M , and define N(x) to be the number of
pairs (a, b) satisfying qdeg(a), qdeg(b) ≤ x with a ≡ a0 and b ≡ b0 (mod M) such that F (a, b) is square-free.

Define N ′(x) = the number of pairs (a, b) satisfying qdeg(a), qdeg(b) ≤ x with a ≡ a0 and b ≡ b0 (mod M)
such that F (a, b) is not divisible by the square of any monic irreducible factor of degree less than or equal
to ξ = 1/3 logq(x).

The following proposition shows that this choice of ξ gives a bound which we shall use later.

Proposition 3.5. If l is square-free and all its irreducible factors have degree ≤ ξ then deg(l) ≤ x2/3.

Proof. We have deg(l) ≤ deg(
∏
p) where the product is taken over all monic irreducible polynomials of

degree ≤ ξ. This number is equal to
∑
d≤ξ dNd where Nd is the number of monic irreducible polynomials

of degree d. But we know that dNd ≤ qd (because
∑
n|d nNn = qd, Proposition 2.12) so then if q ≥ 2 and

[ξ] ≥ 1 we have ∑
d≤ξ

dNd ≤ q1 + q2 + · · ·+ q[ξ]

=
q[ξ]+1 − 1
q − 1

≤ q[ξ]+1 − 1

≤ q2[ξ]

≤ x2/3.

Now define the error terms Ei by writing F (u, v) =
∏r

1 fi(u, v) as a product of irreducible homogeneous
forms with coefficients in Fq[t] and setting

E0(x) = the number of pairs of monic (a, b) with qdeg(a), qdeg(b) ≤ x such that a, b are both divisible by some
irreducible polynomial of degree greater than ξ

and for i = 1, . . . , r,

Ei(x) = the number of pairs of monic (a, b) with qdeg(a), qdeg(b) ≤ x such that fi(a, b) is divisible by the
square of an irreducible polynomial of degree greater than ξ.

Finally, set E(x) =
∑r

0Ei(x). We have the following proposition.

11



Proposition 3.6. For x sufficiently large, we have

N ′(x)− E(x) ≤ N(x) ≤ N ′(x).

Proof. The rightmost inequality is true by definition. For the left inequality take x large enough that
ξ > deg ∆. Then if (a, b) is a pair that contributes to N ′(x) but not N(x) we must have qdeg(a), qdeg(b) ≤ x,
(a, b) ≡ (a0, b0) mod M and there must exist an irreducible polynomial p of degree > ξ such that p2 divides
F (a, b). Now deg(p) > ξ > deg ∆ so p does not divide ∆.

Now if p divides both a and b then the pair contributes to E0(x). So assume this doesn’t happen and then
p2 | F (a, b) =

∏r
1 fi(a, b) implies that either p2 | fi(a, b) for some i (in which case the pair contributes to

Ei(x)) or p divides two different factors. But this second case can’t happen because this would give repeated
roots to the equation F (u, b) ≡ 0 mod p and this equation has no repeated roots because ∆ 6≡ 0 mod p.

Thus (a, b) contributes to E(x) and we see that N ′(x) − N(x) ≤ E(x) which is equivalent to the desired
inequality.

3.6 Section 5: Counting points modulo m

For this section we do not need to assume that F has all of its irreducible factors of degree ≤ 3. We will
find a bound for the number of solutions of F (a, b) ≡ 0 (mod m) congruent to (a0, b0) (mod M) in terms of
m ∈ Fq[t].

Specifically, define ρ(m) = 1 if m ∈ Fq, and otherwise, define ρ(m) to be the number of noncongruent
solutions mod m in polynomials a, b of the congruence F (a, b) ≡ 0 (mod m) which satisfy the extra condition
(a, b) ≡ (a0, b0) (mod M).

Note that if gcd(m,M) = 1, the extra congruence condition (a, b) ≡ (a0, b0) (mod M) is irrelevant, since for
any congruence class [a] mod m we can find a representative A ∈ Fq[t] (i.e., A ≡ a (mod m)) with A ≡ a0

(mod M) by the Chinese Remainder Theorem. However, if gcd(m,M) = δ with deg(δ) > 0, then this extra
condition does affect the value of ρ, since there are only q2 deg(m/δ) tuples of congruence classes mod m which
have representatives which are congruent to (a0, b0) mod M . One can see this by noting that fixing a class
a0 (mod M) fixes the class a0 (mod δ) and so by the isomorphism

Fq[t]/(m) ∼= Fq[t]/(δ)× Fq[t]/(m/δ) (3.1)

there are qdeg(m/δ) different congruence classes mod m which are congruent to a0 (mod M).

For this reason we define r(m) = q2 deg(δ)ρ(m).

Lemma 3.7. The functions ρ and r are multiplicative.

Proof. By the Chinese Remainder Theorem.

Lemma 3.8. Let p ∈ Fq[t] be monic irreducible with p - ∆. Let n > 0 and (a, b) be a solution of F (u, v) ≡ 0
(mod pn) in polynomials in Fq[t]. If ordp(a) or ordp(b) < n/d then ordp(a) = ordp(b).

Proof. Assume that a is the one with least order, then we have both ordp(a) < n/d and ordp(a) ≤ ordp(b).
We now assume that ordp(a) < ordp(b) and derive a contradiction. Note that under this assumption we have
ordp(ad) < ordp(aibd−i) for all i = 1, . . . , d.

12



Now, F (a, b) ≡ 0 (mod pn) implies that

lad ≡ −
d∑
i=1

cia
ibd−i (mod pn)

for some ci. However, since p does not divide ∆, we have that p in particular does not divide l. Therefore,
in this last congruence, the order of the left hand side is strictly smaller than the order of the right hand
side, giving the contradiction.

Lemma 3.9. Let p be a monic irreducible polynomial and let ρ1(p) be the number of solutions of F (x, 1) ≡ 0
(mod p). If p - ∆, then for n ≥ 1,

ρ(pn) ≤ q2 deg(p)[n−n/d] + ρ1(p)
〈n/d〉∑
λ=0

φ(qdeg(p)(n+dλ−2λ)) (3.2)

where [c] (resp. 〈c〉) is the largest integer ≤ c (resp. < c).

Also, if p does not divide M then we have an equality above.

Proof. We show equality when p - M∆. The general case follows since if p | M then ρ will be smaller than
we are expecting it to be by the extra congruence conditions as explained above. We can therefore ignore
the congruence conditions mod M in the rest of the proof .

There are two ways a pair (a, b) can be a solution of F (a, b) ≡ 0 (mod pn):

(i) Solutions of high divisibility : If a, b are polynomials with ordp(a), ordp(b) > n/d then (a, b) is automat-
ically a solution because F is homogeneous of degree d.

(ii) Solutions of a fixed order : If (a, b) is a solution which is not of high divisibility, then ordp(a) = ordp(b)
by Lemma 3.8. We call this common order the order of the solution.

We now count the number of solutions of each type separately:

Solutions of High Divisibility : We just need to count the number of congruence classes in Fq[t]/〈pn〉 with
order ≥ n/d (and then square this result to get the total number of tuples). This is the same as counting the
number of polynomials g of degree < deg(pn) = ndeg(p) with ordp(g) ≥ n/d. Now any g satisfying this is of
the form p〈n/d〉+1f with deg(f) ≥ 0, and so we need to count the possible f . For the upper bound of deg(f)
we have deg(p〈n/d〉+1f) < ndeg(p) which gives deg(f) < (n− 〈n/d〉 − 1) = [n− n/d]. So we see, f needs to
satisfy [n− n/d] > deg(f) ≥ 0 and there are exactly qdeg(p)[n−n/d] polynomials satisfying this bound.

This gives us exactly q2 deg(p)[n−n/d] solutions of high divisibility.

Solutions of a fixed order: We count the solutions of order λ for a fixed 0 ≤ λ < n/d. Consider the following
sets:

A = {(a, b) mod pn | (a, b) is a solution of order λ},

B = {x ∈ (Fq[t]/(pn−λ))× | F (x, 1) ≡ 0 (mod pn−dλ)},

C = {x ∈ (Fq[t]/(p))× | F (x, 1) ≡ 0 (mod p)}.

Note that if (a, b) ∈ A, then (a, b) = (pλα, pλβ) where α, β ∈ (Fq[t]/(pn−λ))×, and so the congruence
F (a, b) ≡ 0 (mod pn) gives F (α/β, 1) ≡ 0 (mod pn−dλ). This gives a map A → B. We also have a map
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B → C and by definition ρ1(p) = |C|. We now count the size of the fibers of each of these maps to compute
the size of A.

For the mapA→ B, note that the set of elements that go to x is given by {(pλux, pλux) | u ∈ (Fq[t]/(pn−λ))×}
and so each fiber has size |(Fq[t]/(pn−λ))×| = φ(q(n−λ) deg(p)).

For the map B → C, we have that p does not divide ∆ which means that F (x, 1) is squarefree mod p
and thus for r ∈ C we have both F (r, 1) ≡ 0 (mod p) and F ′(r, 1) 6≡ 0 (mod p). But this is exactly the
condition for Hensel’s lemma to apply and thus by Lemma 2.14 applied repeatedly, each solution mod p lifts
uniquely to a solution mod pn−dλ. Now we need to count how many lifts each of these congruence classes
has to elements of (Fq[t]/(pn−λ))×. This is simple: the kernel of the map Fq[t]/(pn−λ) → Fq[t]/(pn−dλ)
is (pn−dλ) which has size equal to the number of polynomials of degree < (n − λ) − (n − dλ) which is
qdeg(p)((n−λ)−(n−dλ)) = qdeg(p)λ(d−1).

Multiplying the size of the fibers we get φ(qdeg(p)(n−λ)) · qdeg(p)λ(d−1) = φ(qdeg(p)(n+dλ−2λ)).

Lemma 3.10. The generating function

R(T ) =
∞∑
n=0

ρ(pn) · Tn

is a rational function with at worst simple poles at T = q− deg(p) and at T = ζ · q−(2−2/d) deg(p) where ζ
runs through all dth roots of unity. The power series above converges in the open disk about T = 0 of radius
q−(2−2/d) deg(p).

Proof. Omitted. Rational case uses techniques of Igusa.

Lemma 3.11. We have the following asymptotics:

(i) If pn ranges over all powers of irreducible polynomials then ρ(pn) = O(qn(2−2/d) deg(p)) and r(pn) =
O(qn(2−2/d) deg(p)) as deg(pn)→∞.

(ii) If m ranges over square-free polynomials then ρ(m2) = O(q2 deg(m)dd+1(m)) where dk(m) is the number
of ways in which m can be written as a product of k factors.

Proof. (i) If p - ∆ then noticing that ρ1(p) ≤ d because F has degree d we have

ρ(pn)− q2 deg(p)[n−n/d] ≤ ρ1(p)
〈n/d〉∑
λ=0

φ(qdeg(p)(n+dλ−2λ))

≤ d
〈n/d〉∑
λ=0

φ(qdeg(p)(n+(d−2)λ))

= d

〈n/d〉∑
λ=0

q − 1
q

qdeg(p)(n+(d−2)λ)

≤ dqn deg(p)

〈n/d〉∑
λ=0

qdeg(p)(d−2)λ

= dqn deg(p) q
deg(p)(d−2)(〈n/d〉+1) − 1

qdeg(p)(d−2) − 1

= O(qn deg(p)qdeg(p)(d−2)(n/d))

= O(qdeg(p)n(2−2/d)).
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But q2 deg(p)[n−n/d] is bounded by the same function so we have ρ(pn) = O(qdeg(p)n(2−2/d)) as deg(pn)→
∞ for p - ∆.

Taking the finitely many p | ∆ one at a time, the convergence condition in Lemma 3.10 gives us that
ρ(pn) = O(1/(q−(2−2/d) deg(p))n) = O(qdeg(p)n(2−2/d)) as n→∞. Putting this together with the bound
above we get the desired result.

For the other bound we have r(pn) = q2 deg(δ)ρ(pn) ≤ q2 deg(M)ρ(pn) so r(pn) is bounded by a constant
multiple of ρ(pn) and the same asymptotics apply.

(ii) We have

ρ(p2) ≤ q2 deg(p)[2−2/d] + ρ1(p)
〈2/d〉∑
λ=0

φ(qdeg(p)(2+dλ−2λ)).

Then we have 2 cases: If d = 1 then we have

ρ(p2) ≤ q2 deg(p)[0] +
〈2〉∑
λ=0

φ(qdeg(p)(2−λ))

= 1 + φ(q2 deg(p)) + φ(qdeg(p))

= q2 deg(p) − q2 deg(p)−1 + qdeg(p) − qdeg(p)−1 + 1

≤ q2 deg(p) ≤ (d+ 1)q2 deg(p).

For d ≥ 2 we have

ρ(p2) ≤ q2 deg(p) + d

0∑
λ=0

φ(qdeg(p)(2+dλ−2λ))

= q2 deg(p) + dφ(q2 deg(p))

= (d+ 1)q2 deg(p) − dq2 deg(p)−1

≤ (d+ 1)q2 deg(p).

Thus if m has r factors we see that

ρ(m2) = ρ(c
r∏
1

p2
i ) =

r∏
1

ρ(p2
i ) ≤ (d+ 1)r

r∏
1

q2 deg(pi) = dd+1(m)q2 deg(m)

where the last equality is obtained by noticing that the number of ways that r distinct factors can be
grouped into k factors is kr.

3.7 Sections 6, 7, 8: Square-free values of binary forms

In these sections the paper uses results of Hooley from [Hoo76] to bound the error terms and the main term.
The final result translates to the following statement.

Theorem 3.12. Let F (u, v) be a homogeneous square-free polynomial with coefficients in Fq[t] such that
all of its irreducible factors are of degree ≤ 3. Let M,a0, b0 ∈ Fq[t] with a0, b0 both relatively prime to
M . Let N(x) denote the number of pairs of monic polynomials (a, b) satisfying qdeg(a), qdeg(b) ≤ x with
(a, b) ≡ (a0, b0) (mod M) for which F (a, b) is square-free.
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Then as x→∞, we have
N(x) = A · x2 +O(x2/ log1/2(x))

where A is given by
A = (1/q2 deg(M))

∏
p

(1− r(p2)/q4 deg(p))

with the product taken over all (nonconstant) monic irreducible p.

We need a version of this result with F (a, b) of even degree.

Corollary 3.13. With the same setup as in the theorem above let Ne(x) be the number of pairs with the
above conditions but also with F (a, b) of even degree.

Then for x sufficiently large, we have

Ne(x) ≥ A

q6
· x2.

Proof. Assume A is nonzero (otherwise the statement is vacuous). From the theorem above we know that
there exists a C and an N such that for n > N ,

|N(qn)−Aq2n| ≤ Cq2n/ log1/2(qn) = E(qn). (3.3)

Now take N ′ > N and large enough so that for n > N ′

C

(
q2

√
2n+ 2

+
1√
2n

)
< A(q2 − 2).

Also take x > qN
′+2, and take n+ 1 to be the largest even number less than or equal to than logq(x). Then

n will be an odd number with n > N .

We use the equation (3.3) to show that there are enough polynomials of even degree. Indeed

N(qn+1)−N(qn) ≥ Aq2(n+1) − E(qn+1)−Aq2n − E(qn)

= A(q2 − 1)q2n − (E(qn+1) + E(qn))

= A(q2 − 1)q2n − Cq2n

(
q2

√
2n+ 2

+
1√
2n

)
= q2n

(
A(q2 − 1)− C

(
q2

√
2n+ 2

+
1√
2n

))
≥ Aq2n

So, there are at least Aq2n pairs of polynomials (a, b) of degree n+ 1, which is even. For these pairs F (a, b)
is squarefree and even. So then Ne(x) ≥ Aq2n but n + 1 > log x − 2 so Ne(x) ≥ Aq2(log x−3) = Ax2q−6 as
desired.

3.8 Section 9: Nonvanishing criteria for the constant A

Set Ap = 1− r(p2)/q4 deg(p). Then
A = (1/q2 deg(M))

∏
p

Ap.
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Proposition 3.14. The constant A is zero if and only if Ap = 0 for some monic irreducible p.

Proof. Clearly Ap = 0 implies that A = 0. For the other implication we use the fact that r(p2) = O(q2 deg(p)).
This implies that Ap converges to 1 as deg(p)→∞ so the only way A can be zero is if some Ap = 0.

Proposition 3.15. We have the following conditions for Ap vanishing:

(i) If p2 divides all the coefficients of F (u, v) then Ap = 0.

(ii) If p2 does not divide all the coefficients of F (u, v) we have two subcases:

(a) If p2 |M then Ap = 0 if and only if (a0, b0) is a solution of F (u, v) ≡ 0 (mod p2).

(b) If p |M but p2 - M then Ap = 0 if and only if (a0, b0) is a singular point on F (u, v) ≡ 0 (mod p).

(iii) If p does not divide all the coefficients of F (u, v) and p - M then Ap = 0 implies that qdeg(p) ≤ deg(F ).

Proof. We prove each claim separately:

(i) Notice first that Ap = 0 if and only if r(p2) = q4 deg(p). But if p2 divides all the coefficients of F (u, v)
then every possible solution is one and this condition is satisfied.

(ii) Now assume that p2 does not divide all the coefficients of F (u, v).

(a) With p2 |M we have δ = p2 and thus r(p2) = q4 deg(p) if and only if ρ(p2) = 1. But this is saying
that there is exactly one solution of F (u, v) ≡ 0 (mod p2) also satisfying the auxiliary conditions
which is equivalent to saying that (a0, b0) is a solution.

(b) We have δ = p so r(p2) = q4 deg(p) if and only if ρ(p2) = q2 deg(p). By the Jacobi criterion, (a0, b0)
is a singular point if and only if

(∂F/∂u)(a0, b0) ≡ (∂F/∂v)(a0, b0) ≡ 0 (mod p)

which, by considering the Taylor series expansion, happens if and only if

F (a0 + pλ, b0 + pµ) ≡ 0 (mod p2)

for all λ and µ, which yields the desired result.

(iii) We have δ = 1 so for Ap = 0 we must have ρ(p2) = r(p2) = q4 deg(p) which means that every pair of
polynomials (a, b) is a solution of F (u, v) ≡ 0 mod p2. This implies that there are qdeg(p) solutions of
F (u, 1) ≡ 0 mod p. But then this is a non-zero one-variable polynomial over a field so has at most
deg(F (u, 1)) ≤ deg(F ) solutions and we must have qdeg(p) ≤ deg(F ).

Corollary 3.16. If F (u, v) = v · f(u, v) where f is a homogenous form of degree 3, where p doesn’t divide
all the coefficients of F (u, v), and p - M , then Ap 6= 0 for all p.

Proof. We have deg(F ) = 4 so since we know that deg(p) ≥ 1 and q ≥ 5 we have qdeg(p) ≥ 5 and thus Ap 6= 0
from part (iii) of Proposition 3.15.
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3.9 Section 10: Application to elliptic curves

Let E/Fq(t) be an elliptic curve with non-square conductor C. Choose a model for E to be y2 = x3 + ax+ b
with a, b ∈ Fq[t] both divisible by C. Then let F (u, v) = v · f(u, v) where f(u, v) = u3 + auv2 + bv3. Then
F (u, v) ≡ vu3 mod C.

Define the sign of a pair of congruence classes (a0, b0) both relatively prime to C by choosing a square-free
D ≡ F (a0, b0) ≡ b0a

3
0 mod C and letting the sign be χD(C). We can always choose a squarefree D by the

function field version of Dirichlet’s theorem on primes in arithmetic progression since b0a3
0 is relatively prime

to C. To see that this is well defined note that χD(C) = (D/C) is determined by D mod C.

Lemma 3.17. Assuming the parity conjecture, we can choose (a0, b0) both relatively prime to C so that any
pair (u, v) ≡ (a0, b0) mod C which gives rise to a square-free even-degree D = F (u, v) relatively prime to C
will have rank of ED even.

Proof. Recall that the conductor is C =
∏
pfii with fi = 0, 1 or 2 and by our assumption that C is not

a square we have at least one fi = 1. Then χD(C) = (D/C) =
∏

(D/pi) where the product is only over
the pi’s with fi = 1. By Proposition 2.9 we know that for each such pi there exists D ∈ Fq[t] such that
(D/pi) = ±1 and we can choose D mod pi. So choose a D modulo C such that χD(C) = 1 if the rank of E
is even and χD(C) = −1 if the rank of E is odd. Then choose a0 = 1 and b0 = D. The condition that a0, b0
are relatively prime to C is satisfied because D is relatively prime to C.

Now vu3 ≡ b0a
3
0 mod C so χF (u,v)(C) = χF (a0,b0)(C) = ±1 as chosen above. By Conjecture 3.2 this forces

the rank of ED to be even as desired.

So choose (a0, b0) as in the lemma and the following is the required result to complete the proof of Theorem
3.3.

Proposition 3.18. With notation as above let N (x) denote the number of pairs of monic polynomials (u, v)
satisfying qdeg(u), qdeg(v) ≤ x with (u, v) ≡ (a0, b0) (mod C) for which F (u, v) is square-free and of even
degree. Then

N (x) ≥ B · x2

where B is a positive constant.

Proof. We have this estimate from Corollary 3.13 with B = A/q6 but need to show that A can’t vanish. We
check that each Ap can’t vanish using Proposition 3.15.

We have F (u, v) = u3v + auv3 + bv4 so we don’t have p or p2 dividing all coefficients. If p - C then by
Corollary 3.16 we have Ap 6= 0.

If p | C then we need to check that (a0, b0) don’t satisfy the conditions (a) or (b) of (ii). But F (a0, b0) ≡ b0a3
0

(mod C) where a0, b0 are relatively prime to C and thus to p so F (a0, b0) 6≡ 0 (mod p). Thus (a0, b0) is
neither a (singular) point of F (u, v) ≡ 0 (mod p) nor a solution to F (u, v) ≡ 0 (mod p2).
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