
The Tangent Space to a Scheme

Enrique Acosta

Spring 2011

Definition Let X be an arbitrary scheme and p ∈ X a point. We define the
tangent space to X at p to be the dual space of the κ(p)-vector space mp/m

2
p

where mp is the maximal ideal of the local ring OX,p.

Tangent space to a k-rational point (Hartshorne Ex II.2.8) Let X be
a scheme over a field k. Show that giving a morphism of k-schemes

φ : Spec
(
k[ε]/〈ε2〉

)
→ X

is exactly the same as giving a point p ∈ X with κ(p) = k and an element of Tp.

An intuition why this whole thing works is the following (from Math Stack
Exchange Qiaochu Yuan):

Let k[V ] = k[x1, ...xn]/(f1, ...fr) be the ring of functions on the
variety V = {f1 = ... = fr} = 0. Then a homomorphism φ :
k[x1, ...xn]/(f1, ...fr) → k[ε]/(ε2) is precisely determined by the im-
ages φ(xi) = pi + εqi ∈ k[ε]/(ε2) subject to the condition that
fj(p+ εq) = 0.
The key point here is that

fj(p+ εq) = fj(p) + ε
∑
i

qi∂fj/∂xi(p)

This is just truncated Taylor expansion, and the corresponding state-
ment is true for k[ε]/(εn) for every finite n. Hence this condition
holds if and only if the pi define a point of V and the qi define a
vector orthogonal to the gradients of each of the fj ; this is precisely
the condition that they define a tangent vector over R so we adopt
it as our definition of tangent vector in general. It’s not hard to see
that we can add tangent vectors.
The equations above allow us to give the following definition of the
tangent bundle: define the polynomials gj =

∑
i yi∂fj/∂xi(x) ∈

k[x1, ...xn, y1, ...yn], and then the tangent bundle ought to be Spec
k[x1, ...xn, y1, ...yn]/(f1, ...fr, g1, ...gr). There is probably a coordinate-
independent way to state this definition.

1



Solution: Let p be the image of the point ? ∈ T = Spec
(
k[ε]/〈ε2〉

)
under the

morphism. Then we get and induced map on the stalks

φp : OX,p → OT,? =
(
k[ε]/〈ε2〉

)
〈ε〉 = k[ε]/〈ε2〉

where the description of the stalk of T comes from the previous set of exercises.
Since this map is local then it induces an inclusion of fields

κ(p) = OX,p/mp ↪→ OT,?/m? = k. (∗)

Moreover, since the map φ is a morphism of schemes over k then the commuta-
tivity of the diagram

T
φ−→ X

↘ # ↙

Spec k

gives the commutativity of the maps on the stalks

k[ε]/〈ε2〉 φp←− OX,p

↖ # ↗

k

(∗∗)

as rings. Putting this together with the map (∗) above gives the commutativity
of the following map of rings

k ←↩ κ(p)x #
x

k[ε]/〈ε2〉 φp←− OX,p

↖ # ↗

k

(∗ ∗ ∗)

where the vertical maps on the left of the diagram are the inclusion and the
quotient map by the maximal ideal 〈ε〉 given by

k → k[ε]/〈ε2〉 → k
a 7→ a

a+ bε 7→ a

Thus, we get the inclusion k ↪→ κ(p) ↪→ k (following the right of the diagram)
so that κ(p) ' k. This concludes the proof that p is a k-rational point.
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Now for the fact that we get an element of the tangent space, note that since φp
is local then it maps the maximal ideal of OX,p to the maximal ideal of k[ε]/〈ε2〉
so restriction of φp gives the map

mp
φp−→ m = 〈ε〉.

This map is k-linear with multiplication by k given by inclusions in (∗∗) because
the diagram is commutative and φp is a ring homomorphism. Since ε2 = 0 this
induces a k-linear map

mp/m
2
p → m? = 〈ε〉

where the action of k on the right is given by multiplication since this is the
k-algebra structure we gave k[ε]/〈ε2〉, and since 〈ε〉 is naturally isomorphic to k
as a k-vector space we finally get a k-linear map

mp/m
2
p → k (♦)

where the action of k on mp/m
2
p is induced by the structure map X → Spec k.

We are very close to getting something in the tangent space, since

TX,p =
(
mp/m

2
p

)∗
= Homκ(p)(mp/m

2
p, κ(p)),

and already know that κ(p) ' k. The κ(p)-module structure on mp/m
2
p used in

the definition of the tangent space above is given by multiplication of elements of
OX,p/mp (explicitly, if r ∈ mp/m

2
p and a ∈ κ(p), then a · r = sr where s ∈ OX,p

is any lift of a by the quotient map OX,p → OX,p/mp), and one could expect
that the k(p)-module structure on mp/m

2
p agrees with the k-module structure

that we used in the map mp/m
2
p → k from (♦) above, but this is in fact not

the case. However, we can use the k-linear map in (♦) to obtain an element in
Homκ(p)(mp/m

2
p, κ(p)) in a natural way by using the k-scheme structure of X.

The details are as follows:

The k-scheme structure morphism X → Spec k induces the maps

k → OX,p → OX,p/mp = κ(p)

which form the right vertical column of (∗ ∗ ∗). Since we already know that
κ(p) ' k, this gives a canonical isomorphism of k with κ(p) coming from the
k-scheme structure of X. Let h be the inverse of this composition, and label
the other maps as follows:

k
f // OX,p

g // κ(p) = OX,p/mp

h

ee (♠)

Using the isomorphism h : κ(p) → k we can construct and induced κ(p)-linear
map from (♦)

mp/m
2
p → κ(p)
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by giving mp/m
2
p a κ(p)-vector space structure using h. Specifically, if a ∈ κ(p)

and r ∈ mp/m
2
p then we define a · r := h(a) · r where the action on the right is

given by the k-vector space structure used in (♦), and then the map is defined
by (♦). By definition, the action used in (♦) is given by b · r = f(b)r where
f(b) ∈ OX,p and the product is multiplication in OX,p. Putting this together
we see that the induced action of κ(p) we just defined in mp/m

2
p is given by

a · r := h(a) · r = f(h(a))r, but by (♠) we have g(f(h(a))) = a since g ◦ f is the
inverse of h and so f(h(a)) is a lift of a to OX,p. This implies that the induced
action of κ(p) we just defined on mp/m

2
p is precisely the canonical action of

Ox,p/mp on mp/m
2
p!

Thus, the κ(p)-linear map is an element of Homκ(p)(mp/m
2
p, κ(p)) with the

canonical κ(p)-vector space structure on mp/m
2
p and so an element of Tp. This

concludes the proof that a morphism of k-schemes φ : Spec
(
k[ε]/〈ε2〉

)
→ X

gives a point p ∈ X with κ(p) = k and an element of Tp.

In the reverse direction, take p ∈ X with κ(p) = k and a point v ∈ Tp. Let the
isomorphism of κ(p) with k be given by the induced map from the k-scheme
structure k → Ox,p → κ(p) = OX,p/mp.

We can view v as a κ(p)-linear map v : mp/m
2
p → κ(p). Define the map

ψ : OX,p → k[ε]/〈ε2〉
r 7→ h(r(p)) + v(r − f(h(r(p))))ε

where r(p) = g(r) is the “value” of r at p and we using the notation from (♠)
(in the case when X is an affine variety and OX,p is a space of functions this
r−f(h(r(p))) is really r−r(p) ∈ mp, but in this very general setting we have to
use all these maps to make sense of the value of r at p as an element of OX,p).
Once we know that this is well defined and a ring homomorphism then we can
define the morphism φ : T → X by sending ? to p and the morphism on the
sheaves by sending OX(U)→ Ox,p → k[ε]/〈ε2〉 if p ∈ U (we don’t need to define
anything if p /∈ U since then the inverse image of U is empty!) and this will
immediately be a morphism. Finally, we need to check that φ is a morphism of
k-schemes.

ψ is well defined and a ring hom: We first need to check that r −
f(h(r(p))) ∈ mp. Now, by (♠) we have

g(r − f(h(r(p)))) = g(r)− g(f(h(r(p))))
= g(r)− r(p)
= 0

since r(p) = g(r), g is a ring homomorphism and f ◦ g is the inverse of h. This
implies that r − f(h(r(p))) ∈ mp.

To see why ψ is a ring homomorphism note that

v(rs− f(h(rs(p))) = v(r − f(h(r(p))))s(p) + v(s− f(h(s(p))))r(p)
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since by k linearity this is equivalent to

v(rs−f(h(rs(p))) = v([r−f(h(r(p)))]f(h(s(p))))+v([s−f(h(s(p)))]f(h(r(p))))

and this is true since the difference of the inputs is (r−f(h(r(p))))(s−f(h(s(p)))) ∈
m2
p. This implies that ψ(rs) = ψ(r)ψ(s). The rest of the proof that ψ is a ring

homomorphims is then simple. One also checks that ψ is a k-algbera map where
the k-algebra structure on OX,p comes from the kscheme structure.
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