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1 The Real Projective Plane RP2

In this section we will introduce all the terminology and some pictures that
help to think about the real projective plane. Our main goal is to talk about
curves in the complex projective plane, but it is of course easier to get some
intuition on a space which is two dimensional even if it cannot be embedded
in three dimensional real space in a satisfactory way.

Remember that the real projective plane RP2 is defined to be the set
R3 − {(0, 0, 0)} modulo the equivalence relation (x, y, z) ∼ (λx, λy, λz) for
λ ∈ R×. The points in this space will be denoted by [x : y : z], where of
course x, y, z are not all zero. There are various ways to think about this
space and I will review some of them below.

RP2 is the set of lines of R3 going through the origin. This is almost
immediate by the definition. The equivalence relation identifies any two
points that lie on the same line in R3. This is usually the least useful way
to think about the projective plane.

RP2 is a sphere S2 with diametrically opposite points identified.
This follows by taking the representatives of each line lying on the sphere.
Given any line there will be two points of it on the sphere, and they will be
diametrically opposite.

RP2 is a disc D2 with opposite points on its boundary circle iden-
tified. This follows by just taking the lower-hemisphere representative for
each equivalence class above excluding the equivalence classes on the equa-
tor. This is as close as we can get to a picture of the real projective plane
looking like a plane. It allows us to see that RP2 is in fact two dimensional,
and we have just one point in the picture for most of the points in RP2, the
only ones remaining to be identified being the ones on the boundary.

RP2 can be stereographically projected onto the plane (excluding
the points on the boundary) Place the lower hemisphere on top of
the plane, and stereographically project from the center of the sphere. The
points on the boundary will have no image, but we do get some intuition
on what they stand for: they represent the directions in the plane. See the
Figure 1.

RP2 is three real planes, all glued together in a very complicated
way so that each one contains most of the other two. This follows
from the fact that in the set where x 6= 0, the map

RP2 → R2

[x : y : z] 7→ (y/x, z/x)
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Figure 1: Stereographic projection of the real projective plane

Figure 2: The plane and the line at infinity

is a homeomorphism (the topology of RP2 being the quotient topology), and
the same happens on the sets where y 6= 0 and z 6= 0. If we call these spaces
Ux, Uy, Uz respectively, we see that what each is missing from any other is a
line (as will be explained in more detail in the next section). For example,
Uz is missing the line z = 0. The line that each one of these is missing is
called the line at infinity. One usually works with Uz, knowing that there is
a line infinitely far away and not in the picture. See Figure 2.

As a matter of fact, the disc model we previously mentioned is precisely a
bounded picture of the situation with the line at infinity being the boundary
circle of the disc. Each point of the line at infinty fixes a direction.

We give a final way to view the projetive space. This is of little practical
use for our purposes, but it is nonetheless interesting to note how weird the
topology of RP2 is.

RP2 is the result of sewing the cirle boundary of a disc D2 to
the boudary of a Möbius band (a circle also). Take the square
representation of the Möbius band where the two vertical segments are to
be identified. We plan to sew the boundary of the disc to the top and bottom
segments. To acomplish this, cut the square in half with a horizontal line,
then flip the bottom part and identify two of the vertical segments that
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Figure 3: The Möbius band in the Real projective plane.

now match. To identify the remaining vertical edges bend the strip into an
annulus making sure that the sides that have to be identified due to the
cut we performed on the square form the outer cirle. The disc can now be
sewn to the figure as the segments where we wanted to sew it to now form
the inner disc of the annulus (with some pictures one may check that the
orientations are correct). We then get a disc ojn which the diametrically
opposite points of the boundary remain to be identified, that is, RP2.

Amazingly, one can draw a picture of RP2 depicting this fact! See the
Figure 3 (taken form [1]).

1.1 Real Manifold Structure

The real projective plane has the structure of a real smooth manifold where
the standard coordinate charts are the affine subspaces Ux, Uy, Uz considered
earlier. The transition funtions are easily checked to be smooth, and some
extra work shows that RP2 is moreover a non-orientable smooth manifold.
The following theorem gives one of the reasons why one wants to study curves
in the projective plane. Seeing a curve in the projective plane “compactifies”
the curve.

Theorem 1. RP2 is compact.

Proof. It is the topological quotient of a compact space (the sphere). �

Any line of RP2 is given by an equation of the form ax+by+cz = 0 where
not all a, b and c are zero. They are the result of viewing lines in R2 inside
RP2 when R2 is identified with Uz or any other standard chart. Specifically,
taking a line dx + ey = f in R2 gives the equation d(x/z) + e(y/z) = f
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Figure 4: Intersection of Parallel lines at Infinity.

which we can transform to dx+ ey = fz. This adds one extra point to the
line, the one satisfying z = 0. Therefore, we see that, topologically, lines in
RP2 are circles. They are the one point compactification of R. A picture
of this can be seen by using the stereographic projection: the points of the
line lying on the equator of the sphere get identified giving a circle.

The following theorem is just a very particular case of Bezout’s theorem,
which states that any two projective curves of degrees n and m intersect
exactly at nm points counting multiplicities. This is only true over the
complex numbers, and one needs to define multiplicities of intersections of
curves very carefully. The proof for intersections of lines is pretty simple.

Theorem 2. Any two distinct lines in RP2 intersect at one point.

Proof. Taking two distinct lines a1x + b1y + c1z = 0, a2x + b2y + c2z = 0
where [a1, b1, c1] 6= [a2, b2, c2] we see that the homogeneous system

a1x+ b1y + c1z = 0
a2x+ b2y + c2z = 0

has rank 2, and so has a one dimensional solution space in R3, the line of
intersection of the planes. This is one point in RP2. �

Note that Theorem 2 implies that parallel lines on the plane intersect
at one point when considered in the projective plane (the point at infinity).
Bezout’s theorem is even true for lines in R2! A very informal picture-proof
of the previous result for the delicate case in which the lines are parallel can
be given by means of a picture. It involves looking at the curves under the
inverse stereographic projection explained above. Hopefully, Figure 4 will
speak for itself.
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Figure 5: The three Axis of the Projective Plane

Theorem 2 also gives us one final way to view the projcetive plane. In
RP2 there are three coordinate axis: the x, y and z axis. Any two of them
appear in each one of the standard charts Ux, Uy and Uz, the missing one
being the “line at infinity” of the corresponding chart. For example, the
part of RP2 which is not present in Uz is the line defined by z = 0. We can
schematically draw these three axis in the plane, bearing in mind Theorem 2
which implies that each coordinate axis intersects the other two. This gives
the sketch of RP2 shown in Figure 5. Each line has the topological type of a
circle, and if we consider a strip around each line with the line as the center
circle we will get a Möbius band (to see this take a horizontal strip in the
disc model of RP2 to get a band with the opposite edges identified in the
way they are in the Möbius band).
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2 Topology of Curves over the Complex Projec-
tive Plane

As was mentioned earlier, and by the nature of the results that can be
obtained (eg. Bezout’s Theorem), it is desirable to consider the base field to
be C instead of R. Just to give some extra examples justifying this change,
note that in this setting the “one point curve” x2 + y2 = 0 over R2 ceases
to be an aberrant “curve” and becomes the union of the lines x = iy and
x = −iy since x2 + y2 = (x + iy)(x − iy) over C. Also, the line x = 2 will
intersect the circle x2 + y2 = 1 in the two points it will be expected to.

The main topological fact about curves over the complex projective
plane is that they are Riemann Surfaces as long as they are nonsingular
(or smooth). This is what we will first discuss.

2.1 Riemann Surfaces

A Riemann surface is defined just like a differentiable manifold, there being
three essential differences:

• The charts (φ,U) are maps φ : U → C.

• The transition maps φ ◦ ψ−1 have to be holomorphic on their domain
(ψ(U ∩ V ) if the carts are (φ,U) and (ψ, V )).

• The topological space is assumed to be connected.

Of course, the term “surface” used to refer to these objects comes from
viewing them as real manifols. A basic fact following from the definition of
Riemann surface is the following:

Theorem 3. Every Riemann surface is orientable.

Proof. To check orientability we have to look at the induced real 2-manifold
structure of our Riemann surface. Let z and w be local coordinates on some
overlapping domains. The requirement on the transition maps implies that
there exists a holomorphic function f such that f(z) = w. If we let z = x+iy,
w = s+it and f = u+iv, then our local coordinates over R are given by (x, y)
and (s, t) and the transition function is f(x, y) = (u(x, y), v(x, y)) = (s, t).
The Jacobian of this transformation is[

ux uy

vx vy

]
whose determinant is (by the Cauchy Riemann equations) equal to u2

x+v2
x =

|f ′(z)|2 ≥ 0. Since f is biholomorphic by hypothesis (it is a change of basis
and so the opposite change of basis, f−1, is holomorphic also) we get that
f ′(z) 6= 0 by the chain rule. Thus, all the carts are compatible! �
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We will also need the following theorem regarding compact Riemann
surfaces (the proof is not included).

Theorem 4. Every compact Riemann surface is a g-holed torus.

The number of holes is called the genus of the Riemann surface.

2.2 The Complex Projective Line CP1

This is the simplest curve over C that one can imagine. However, the reason
why it is what we want to call “a curve” will only be clear until we get to
discuss the projective plane CP2.

The construction of CP1 is no different from what was discussed before
for RP2, but we go over it because we want to discuss some topological facts.
CP1 is the quotient C2 − {0}/ ∼ where (x, y) ∼ (kx, ky) for any k ∈ C∗. Its
points are denoted by [x : y], and it can be covered by two particularly nice
open sets Ux, Uy where x 6= 0 and y 6= 0 respectively. In a way similar to
what was discussed for RP2, each Ux and Uy can be seen to be homeomorphic
to C (e.g., Ux → C : [x : y] 7→ y/x is a homeomorphism), and so in this case
we could say that CP1 is the union of two planes glued together in a very
weird way. However, as we are about to see, the glueing is not that weird
after all.

First, note that by identifying C2 with R4 in the obvious way we get a
norm on C2 given by

||(x, y)|| = ||(a+ ib, c+ id)|| =
√
a2 +2 +c2 + d2

For the construction of CP1 we can therefore restrict our attention to
the points with norm 1 which give the 3-sphere S3(C) (the C is there only to
point out that we are regarding it a a subset of C2). We then get that CP1 is
the quotient S3(C)/ ∼ where ∼ identifies the points (x, y) and (λx, λy) for
all λ ∈ C with |λ| = 1. Of course, this is no longer as simple as identifying
“diametrically opposite points” (in some sense this is the quotient S3/S1).
Nonetheless, this fact helps us understand why CP1 is compact.

Theorem 5. CP1 is compact and connected.

Proof. Let (x, y) ∈ S3(C) ⊆ C2. If x = a+ ib and y = c+ id, we get

1 = |x|2 + |y|2 = a2 + b2 + c2 + d2,

and so, identifying C2 with R4, we see that S3(C) is the set where the
continuous norm function

||(a, b, c, d)|| =
√
a2 + b2 + c2 + d2

takes the value 1. As such, it follows that S3(C) is connected, closed and
bounded (so compact). Since CP1 is S3(C)/ ∼, it follows that CP1 is also
compact and connected (any quotient of a connected compact space will be
so). �
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However, a closer look at the original definition of CP1 gives us much
more than this. CP1 is in fact a very well known Riemann surface. The
charts Ux and Uy cover CP1 and each is homeomorphic to C. If we denote
by z = y/x and z′ = x/y the local coordinates of these charts, we see that
the change of coordinates is given by z′ = 1/z. This is holomorphic in (the
image of) Ux ∩ Uy. Moreover, if we identify Ux with C, we see that to get
CP1 we identify the complement of the origin of C with another copy of C
by means of the formula z = 1/z′. That is, what do to obtain CP1 we just
add one extra point to C (the origin of the other copy) at infinity of our
plane (|z| → ∞) and so CP1 is no other than the Riemann sphere S2! The
explicit formulas are given below.

Theorem 6. As a differentiable manifold, CP1 is just S2.

Proof. Take S2 ⊂ R3 with equation s2 + t2 + w2 = 1 and define the map
S2 → CP1 by

(s, t, u) 7→ [s+ it : 1− u]

Then the inverse mapping can be seen to be given by

[x : y] 7→
(

2Re(xȳ)
|x|2 + |y|2

,
2Im(xȳ)
|x|2 + |y|2

,
|x|2 − |y|2

|x|2 + |y|2

)
.

These formulas are obtained by using a sort of stereographic projection of
the sphere with center at the origin to the planes u = 1 and u = −1 thinking
about them as copies of Ux and Uy and taking into account the appropriate
identifications (u = −1 corresponds to y = 0 and u = 1 corresponds to
x = 0). �

As a final note regarding this result, note that with the identification of
CP1 with S2, the projection map in the proof of Theorem 5 gives a map
S3 → S2 where the primage of every point is a circle. This map is known
as the Hopf fibration and is of great interest.

2.3 The Complex Projective Plane CP2

The complex projective plane is defined exactly like RP2 was defined above,
replacing R everywhere by C. It again can be seen as the quotient of a
sphere, but this time in higher dimensions. Specifically, CP2 is S5(C)/ ∼
where ∼ identifies the points (x, y, z) on the sphere (5 real dimensions) with
all its multiples by complex λ with |λ| = 1. Again, this implies that CP2 is
connected and compact. We also see that CP2 is four dimensional as a real
manifold, so we certainly have no accurate pictures now!

If we denote the coordinates in CP2 by [x : y : z] as was done with RP2,
then we see that CP2 is covered by the open sets Ux, Uy and Uz where x 6= 0,
y 6= 0 and z 6= 0 respectively. Each of these is homeomorphic to C2 in a
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natural way. Note also that the part of CP2 missing in Uz (for example) is
{[x : y : 0] : x, y ∈ C} which is a copy of CP1.

CP2 is the space where we want plane algebraic curves to live in: we
started off with the real plane and then added points at infinity obtaining in
this way the projective plane, and then we wanted to allow our coordinates to
live in C. This is what we get. Everything makes sense, at least intuitively,
as long as we consider the dimensions over C instead of R. C is to be regarded
just as a field, and not as a two dimensional plane (even though in this paper
we will try to look at the topology of the situation over R). The plane over
this field is C2, and our “curves” are defined by equations f(x, y) = 0. To
make our space compact (this will also make our curves compact as we will
see later on), and to get a coherent theory of intersections of curves, we add
points at infinity of our plane getting CP2 and regard the original plane C2

as the open subset Uz.
Since our coordinates are homogeneous, curves in CP2 are given by equa-

tions of the form f(x, y, z) = 0 where f(x, y, z) is a homogeneous polyno-
mial in x, y, z. The passage between curves in CP2 and C2 is as follows: If
f(x, y, z) = 0 is a projective plane curve, we get a curve f(x/z, y/z, 1) = 0
in C2. In the other direction, starting with a curve g(x, y) = 0 in C2, we get
its corresponding projective curve in CP2 by making g(x, y) homogeneous
by adding appropriate powers of z to each term (this is called the projec-
tive closure of the affine curve). Of course, there is nothing special about
z in this whole discussion. We call the parts of a projective curve lying in
Ux, Uy or Uz its affine parts. One can give a more general definition of the
affine parts of a curve (showing there is nothing special about the sets where
x = 0, y = 0 or z = 0 besides the fact that they are “lines”) but this will
not be necessary here.

We will now prove that every smooth projective curve in CP2 is in fact
a compact Riemann surface.

2.4 Complex Projective curves are Riemann surfaces

Smoothness of plane projective curves is defined locally. That is, we say
that a projective curve is smooth if every affine part is smooth. An affine
curve is smooth if it is smooth at all of its points, and smoothness at a point
is defined in terms of the multiplicity of the intersections of lines with the
curve passing through that particular point. In most algebraic curves books
one finds a proof of how this definition is equivalent to the following: an
affine irreducible curve f(x, y) = 0 is smooth at a point (a, b) if the partial
derivatives of f do not simultaneously vanish at (a, b).

One should notice that the curve y3 = x4 is not smooth at the origin
even though the real picture looks smooth! (The reason being that it is only
a C1 submanifold of R2. See [1] pgs. 213-∞). One can see that a projective
irreducible curve F (x, y, z) = 0 is smooth if and only if there is no point
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[a : b : c] ∈ CP2 for which all the partial derivatives of F vanish (by Euler’s
theorem on derivatives of homogeneous polynomials) so that checking all
the affine parts is rarely necessary. We are now ready to state the main
theorem of this section. We begin with a lemma.

Lemma 7. Any smooth affine curve f(x, y) = 0 is a (non-compact) Rie-
mann Surface.

Proof. Let P = (a, b) be any point on the curve. The smoothness assump-
tion implies that one of fx(a, b) or fy(a, b) does not vanish. Assume without
loss of generality that fy(a, b) 6= 0. The implicit function theorem (over C)
implies the existence of a holomorphic function gP (x) defined on an open
set UP containing a such that f(x, gP (x)) = 0. This means that the curve
f(x, y) = 0 around P is the graph of y = gP (x). Define the chart around P
to be (g−1

P (UP ), πP : (x, y) 7→ x). Since at all points one of the derivatives
does not vanish, by constructing the above chart for each curve we get an
open covering of our curve. Of course, we may need to project to either the
x-coordinate or the y-coordinate depending on the point.

To prove compatibility of the charts note that if P and Q both have
charts projecting onto the x-coordinate, then πP ◦ π−1

Q = idUP∩UQ
which

is obviously holomorphic. The same holds if both charts project onto the
y-coordinate. For the last case assume that the chart at P projects onto
the x-coordinate and that the chart at Q projects onto the other and let
R ∈ g−1

P (UP ) ∩ g−1
Q (UQ) be in the intersection of both charts. On this set

the curve is both of the form y = gP (x) and x = gQ(y), and so

πQ ◦ π−1
P (z) = πQ(z, gP (z)) = gP (z)

πP ◦ π−1
Q (z) = πP (gQ(z), z) = gQ(z)

which are both holomorphic.
Lastly, any irreducible algebraic curve over C is connected, this fact is not

straightforward to prove, and certainly is not true over R (eg. x2 − y2 = 1,
or y2 = x(x−1)(x−2)). [4] in p.11 refers to Shafarevich’s text on Algebraic
Geometry for a proof. �

Theorem 8. Every smooth projective plane alegbraic curve is a compact
Riemann Surface.

Proof. Let F (x, y, z) be a polynomial satisfying the condition of smoothness
described above. This implies (proof omitted) that F (x, y, z) is irreducible
(intuitively, if F were reducible then Bezout’s theorem would imply the
existence of singularities). Therefore, the affine parts of the projective curve
C defined by F = 0 are given by

Cx : F (1, y, z) = 0
Cy : F (x, 1, z) = 0
Cz : F (1, y, z) = 0
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and are all smooth. By the previous lemma we get that Cx, Cy and Cz can
all be given Riemann surface structure. What remains to be proved is that
these charts are all compatible when viewed in the projective curve C in
CP2.

Let P be a point in Ux ∩ Uy. In Ux the coordinates are (y/x, z/x) and
in Uy they are (x/y, z/y). In both affine parts we have charts projecting
into either the first or the second factor (by the proof of the lemma above).
Taking one of the cases, suppose that the chart φx in Ux projects onto the
first factor and that the chart φy in Uy projects onto the second. Then
φx([x : y : z]) = y/x and φy([x : y : z]) = z/y. Now φ−1

x (w) = [1 : w : h(w)]
for some holomorphic function (by the proof of the lemma) and so

φy ◦ φ−1
x (w) = φy([1 : w : h(w)]) =

h(w)
w

which is holomorphic since w 6= 0 as P ∈ Ux ∩ Uy. Similar arguments need
to be given in a considerable amount of cases we omit (See [3] for all the
possibilities).

For the statement about compactness take a point P /∈ C. We can take
an affine open set that contains P and the corresponding affine part of C,
and transfer the picture to C2. The point P will not be in this affine part
of the curve either, and this affine part of the curve is closed in C2 since it
is the set where a polynomial vanishes. Therefore, there is a neighborhood
of P in C2 which does not intersect C. This neighborhood gives an open
neighborhood of P in CP2 which does not intersect C (remember the sets
Ux, Uy and Uz are open in RP2). Therefore the set C is closed, and since
CP2 is compact we conlude that C itself is compact. Note that this local
argument is necessary since F (x, y, z) is (regrettably) not even a function
on CP2.

Connectedness follows from the fact that each affine part is connected
and each part intersects the other two. �

We therefore get the following corollary.

Corollary 9. Every smooth projective plane alegbraic curve is topologically
a g-holed torus.

The number g of holes is called the genus of the smooth curve. For
irreducible singular curves we can actually associate a Rieman surface, often
called the resolution of singularities of the curve, and the genus is defined
as the genus of the resolution. See [2] Chapter 9 for references.

An important fact about the genus of a smooth curve is that it can also
be defined algebraically allowing one to define the genus of a curve over
arbitrary fields (the definition is considerably involved). The genus of a
curve turns out to be a very important invariant even when one works over
fields where there is no intuition of what it means. For example, an amazing
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result relating number theory, geometry and topolgy is the following: For a
curve defined with coefficients over Q, if the genus is strictly greater than 1
then the number of rational points on the curve is finite. This means, loosely
speaking, that when one is wondering about the set of rational solutions to
an equation with rational coefficients, the actual topological nature of the
curve that this equation is defining is of enormous importance. In some
sense, “Geometry governs Arithmetic”. Of course, the relation between
geometry and number theory goes far beyond this fact, but this is one of
those instances where the connection is surprisingly strong.
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Figure 6: A misleading Picture of the intersection of two lines

3 Some insight coming from the Riemann surface
structure

Our purpose in this section is to give some insight to some very well known
facts from algebraic curves arising from what we know about their Riemann
surface structure (at least for the smooth ones). None of the arguments
which follow are proofs, but they nonetheless give tremendous insight to
formulas that apparently seem to have no reason for being what they are in
more general settings.

3.1 Lines in the Complex Projective Plane

As we saw, the complex projective line CP1 is diffeomorphic as a manifold
to S2. If we take any line in CP2 given by ax + by + cz = 0, then after a
change of coordinates we can make the equation of the line become z = 0.
Thus, any line is diffeomorphic to the set of points of the form [x : y : 0]
which is no other than CP1, i.e., any line in CP2 is topologically a sphere.
Moreover, by extending Theorem 2 to C, or by Bezout’s theorem directly,
we see that any two lines in CP2 will intersect at exactly one point.

Therefore, we see that trying to picture what is happening when two lines
intersect in the four-dimensional complex projective plane CP2 is nothing
but mind-boggling: The space is four dimensional (and moreover projective),
lines are spheres, and each line (sphere) intersects any other line (sphere)
in exactly one point. No matter which two lines one takes, the topological
situation will be that of two spheres touching each other at one point. The
first picture one can come up with in R3 (depicted in Figure 6) is misleading
because we know that as far as our lines are distinct, their intersection will
be transversal (they will not share the same tangent space at the point).
A better picture of the situation would be the one in Figure 7 showing
the transversality of the intersection, but then we have pictures non-smooth
spheres and we know the spheres are smooth. Of course, what we are missing
is one extra dimension where we can fit two smooth spheres touching at a
point P and not having the same tangent plane at P !

We will nonetheless see (at least partially) the usefulness of being able
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Figure 7: A better picture for the intersection of two lines

to picture the situation in the next section.

3.2 The genus in terms of the degree

A basic result from the theory of algebraic curves is that the genus of a
smooth irreducible curve defined by a polynomial of degree d is given by the
formula

g =
(d− 1)(d− 2)

2
.

It may (or may not) seem surprising that the genus of the curve is so
intimately related to the degree of the defining polynomial. In this section
we will give a geometric argument showing the plausibility of this formula
and how one might guess it is true. The actual proof of the formula needs
far more background than what is presented here.

We first show that if we fix a particular degree d, the set of projective
curves defined by polynomials of degree d can be given the structure of a
projective space by itself in which the equation of a curve corresponds to a
point. To do this, note that the set of homogeneous polynomials of degree
d is a vector space generated over C by the monomials of the form xiyjzk

where i + j + k = d. With some combinatorics one can prove that there
are exactly (d + 1)(d + 2)/2 monomials, and so this space has dimension
N = (d+ 1)(d+ 2)/2. If we now fix an ordering of these monomials, we see
that any homogeneous polynomial of degree d is uniquely specified by giving
the coeficients a1, a2, . . . , aN of each monomial. Considering now the curve
that the homogeneous polynomial with coefficients a1, a2, . . . , aN defines,
we see that the polynomial ka1, ka2, . . . , kaN defines the same curve for any
k ∈ C×, and so the space of degree d curves can be naturally identified with
the projective space CPN−1 with coordinates [a1 : a2 : . . . : aN ].

Now, it may seem likely (this is one of the things we will not prove or
make precise) that as one varies the coefficients continuously then the cor-
responding curves transform continuously. CPN−1 parametrizes all degree d
curves in the sense described above. This will allow us to look at a particular
curve of degree d and try to extract information about the nature of curves
of degree d by seeing what we can do to the topology of the curve with
small perturbations. Some of the curves will be singular, but the definition
of singular curve shows that they all lie in a “small set” (I am uncertain of
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Figure 8: A smooth curve of degree 2.

whether the set of points defining singular curves defines an algebraic set,
but it doesn’t seem unlikely).

Let us look at the case of degree 2 and 3 in some detail. For curves of
degree 2 we may look at the curve xy = 0. We consider this curve because it
is the union of two lines and we already know what the topological situation
is in this case. Specifically, the curve xy = 0 looks topologically like two
spheres touching at one point transversally as in Figure 7. This curve is
obviously singular, but considering the effect of a small perturbation of
the coefficients one expects to be able to obtain a non-singular curve, and
moreover, that the effect of the perturbation is that it replaces the point of
contact of the spheres by a smooth “neck” connecting them as in Figure 8.
From this one would guess that curves of degree 2 have genus zero, and this
is in fact the case. This is our formula g = (d − 1)(d − 2)/2 for the case
d = 1.

For curves of degree 3 we may also take the particularly simple curve
xyz = 0. In this case we have three lines, each intersecting the other two
transversally. In terms of the surfaces, we have 3 spheres, each intersecting
the other two transversally at one point. A picture of this can be seen
in Figure 9. This curve has three singularities, and perturbations of the
coeficients will smoothen out these by replacing them by necks connecting
the spheres. This gives a torus, whose genus is 1. This is in fact the case:
any nonsingular conic has genus 1.

Note, however, that in these pictures one does not see why the resolution
of singurarities of a singular cubic is a sphere, or why the genus drops when
singularities are present. These pictures do not serve concretely to infer
results about curves, but they do give us the genus of a member of the
family. What we tried to do above was obtaining the highest genus possible.

For higher degrees one may use similar configurations of lines. In general,
the curve will not be defined by a monomial because we only have three
variables, but any union of lines in “general” position will do (by general
position we mean that no three lines intersect at the same point). For
example, for degree 4 we get four lines and so we are led to consider an
arrangement of spheres in space located in the vertices of a tetrahedron.
Smoothening the intersections gives a surface of genus 3 (See Figure 10).
Again, (4 − 1)(4 − 2)/2 gives 3. The situation regarding the surfaces will
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Figure 9: A singular Cubic.

Figure 10: Smooth curves of degree 4 have genus 3.

be that of d spheres intersecting at d(d − 1)/2 points (one for each set of
two spheres). One can prove that if one replaces the points of intersection
by smooth necks that one obtains a surface with (d− 1)(d− 2)/2 holes (see
[3] for the argument). This gives the formula stated at the beginning of the
section.

In the realm of algebraic geometry the notion of equivalence is more
strict than the topological one we have been discussing. One only consid-
ers rational maps (maps given by rational functions) between curves, and
equivalence of curves is characterized by the existence of birrational maps
(rational maps with rational inverses). It is a very surprising fact that these
topological results carry all the way to this more restrictive setting. The
topological equivalence of curves of degree with lines (i.e., spheres) trans-
lates and generalizes to the fact that every conic is birrationally equivalent
to a line. This in turn implies that every conic is parametrizable by rational
funtions, and all is intimately related to these topological pictures we have
been considering. The algebraic genus of a curve is a birrational invariant,
and as was mentioned earlier, is intimately related to the arithmetic of the
curve.
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4 What comes next

Here is an annotated list of possible topics to follow up this term paper.

The Riemann Hurwitz Formula. This formula relates the genus of two
compact Riemann surfaces when there exists a holomorphic map between
them. The formula involves the genus of both surfaces, and the number
of sheets and order of the branching points of the map between the sur-
faces. With it, one can prove the degree genus formula for smooth curves
by projecting the curve to the complex projective plane and studying the
branching points. Contents could include:

· Triangulations of surfaces
· The Euler characteristic and why it is well defined.
· Definition of the genus of a surface.
· Branched coverings
· Proof of the degree-genus formula using this material.
· An explanation of the example found in Raoul Bott’s article: On the

shape of a curve.

References : Fulton, Miranda, Brieskorn, Kirwan, Fischer, Bott’s article.

The genus of singular curves. Resolution of singularities in the various
ways it is possible, showing that the genus thus defined is independent of
what method is used.

· Construction of a Rieman surface S and a map between S and the set
of nonsingular points of the curve which is biholomorphic. (Fischer’s
book Chapter 9 is a good place to start).

· Defining the genus of the curve as the genus of S, and why this is well
defined.

· Blowing up points: Over arbitrary fields, and the special case when the
field is C where the topological situation can be studied (Brieskorn’s
σ-process).

· As much examples as possible of both things.

References: Brieskorn, Fischer, Kirwan, Miranda.

Topology of Conics and Cubics Some analysis of curves of low degrees,
studying how singularities behave, how they appear and the shape of the
singular sets in the parameter space. (Brieskorn has at least two degrees
worked out).

· The surface of the singularities of families of conics.
· Elliptic curves from topology: Brieskorn pg. 313.
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· How the torus of cubics changes when singularities appear.
· The y2= quartic...why is it a torus?

References: Brieskorn, Miranda CH III p.57.

Intersection of Curves

The Topology of Bezout’s Theorem

References: Brieskorn.

The topology of singularities of complex curves Brieskorn contains
lots of material about the topological nature of singularities of curves. This
includes associating knots to singularities!

Hopf Fibrations Study the maps S2n+1/S1 → RPn, in particular S3/S1 →
S2. They are briefly mentioned in Brieskorn p. 138.
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Birkhäuser Verlag, 1981.

[2] Gerd Fischer. Plane Algebraic Curves, volume 15 of Student Mathemat-
ical Library. American Mathematicl Society, 2001.

[3] Frances Kirwan. Complex Algebraic Curves. Number 23 in London
Mathematical Society Student Texts. Cambridge University Press, 1992.

[4] Rick Miranda. Algebraic Curves and Riemann Surfaces, volume 5 of
Graduate Studies in Mathematics. American Mathematical Society,
1995.

[5] Robert J. Walker. Algebaric Curves. Princeton University Press, 1950.

20


