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Introduction

The discipline which uses analysis to prove properties of natural numbers is called Analytic Number
Theory. In this work I present one of the greatest achievements of this discipline; the proof of the
Prime Number Theorem which in one of its many forms states that

lim
x→∞

π(x)
x/ log(x)

= 1 (1)

where π(x) is the number of prime numbers less than or equal to x ∈ R.
The various attempts to prove this theorem made Analytic Number Theory evolve into the

powerful tool which it has come to be in the study of natural numbers, and in the meantime they
unexpectedly motivated advancements in the field of Complex Analysis.

Euler was the first known mathematician to use the tools of analysis to prove theorems on
number theory in his now famous proof of the divergence of the series

∑
p 1/p made up of the

reciprocals of prime numbers (from which the infinitude of the prime numbers follows). This proof
used the divergence of the series

∑∞
n=1 1/n and a remarkable relation which Euler himself had

discovered between the prime numbers and the series
∑∞
n=1 1/ns where s is real and s > 1.

After subsequent generalizations by Euler and other mathematicians such as Dirichlet (from
whom the received their name), a coherent and very interesting theory on Dirichlet series has
been developed which will be presented in the first chapter of the present work. Proofs of the
main theorems are given as well as various properties of these series which show the existing
relations between them and the multiplicative structure of natural numbers, particularly with
prime numbers. An amazing link between classical number theory and analysis, apparently distant
disciplines in the mathematical world appears through these series.

At the end of the chapter some applications of this theory to classical number theory are devel-
oped. In particular,to the theory of convolutions of arithmetic functions. Results and definitions
about convolutions are more transparent under this general context. For example, a clear motiva-
tion for the definition of the Möbius µ function will be given as well as a very short and simple
proof of the Möbius inversion formula.

Chapters 2 and 3 are devoted mainly to the proof of the Prime Number Theorem. Chapter 2
deals with the Riemann ζ (zeta) function which is by far the most known Dirichlet series and of
fundamental importance for the proof. Proofs of the main properties of this function needed for
the proof of the Prime Number Theorem will be given. The Prime Number Theorem is proved in
chapter 3.

The strategy of the proof of the Prime Number Theorem present in this work is mainly due
to Riemann who in his revolutionary and only paper on number theory showed a possible line of
attack to study π(x) using the theory of Complex Analysis which he had been developing. In this
article, Riemann introduces the ζ function and states his famous hypothesis, still without proof.
The specific form of the proof is product of later simplifications and alternatives which have been
found to elude the difficulties which Riemann encountered and is in essence the one exposed in
[Jam03].

The Prime Number Theorem, which basically states the existence of some sort of regularity
in the growth π(x) function was stated for the first time (independently) by Legendre and Gauss
in forms different from the one presented in (1). It finally proved (independently) by Hadamard
and de la Valle Poussin in 1896, nearly forty years after Riemann’s article had been published.
Until 1949 all known proofs of the Prime Number Theorem used complex analysis and followed
Riemann’s ideas. In this year Selberg and Erdös found proofs which did not use complex analysis
although they still used analysis. These proofs are nowadays called elementary. Proofs which use
complex analysis are however, more transparent.
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All the theorems present in this work can be found in the bibliography but the organization of
the themes and theorems is my own. Some minor modifications and simplifications were made in
various proofs and great stress was made to motivate the ideas behind some arguments. Unlike
texts like [Apo76] by Apostol, this work is devoted completely to the proof on the Prime Number
Theory. In some cases, more general results than needed are presented and proved when they result
enlightening. In particular, a considerable amount of theory on Dirichlet series, ignored on some
proofs of the prime number theorem where only the Riemann ζ function is studied, is presented
to stress the existence of the relationship between these series and prime numbers.
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Chapter 1

Dirichlet Series

This chapter will introduce Dirichlet series, very important series in analytic number theory. They
are a generalization of the Riemann Zeta function.

1.0.1 Definition. Let s ∈ C. A series of the form

∞∑
n=1

f(n)
ns

(1.1)

where f : N→ C (different from zero for some n) is called a Dirichlet series.

The shorter notation
∑
f(n)/ns for (1.1) will be used where there is no risk of confusion.

It is worthwhile to remind that for s ∈ C and n ∈ N, ns is defined by ns = es logn where log n is
the real and natural logarithm of n. This function ( s→ ns ∈ C ) is analytic in the whole complex
plane and has derivative ns log n. The notation s = σ+ it with σ, t ∈ R will be used systematically
throughout this work to denote an arbitrary complex number. It is to be understood that under
this convention when writing s0 it will follow that s0 = σ0 + it0 where σ0, t0 ∈ R. Note also that
|ns| = nσ for any s ∈ C.

The most famous Dirichlet series is
∑

1/ns, known as the ζ function and defined for s where
the series converges. It was studied for the first time by Euler (who discovered its relation with
prime numbers) as a function of real variable and named ζ by Riemann, the first one to study
it as a function of a complex variable. Dirichlet series where studied systematically by Dirichlet
who generalized the results discovered by Euler on the ζ function to prove the famous theorem on
number theory which now bears his name.

1.1 Analytic Properties

1.1.1 Lema. If there exist s0 ∈ C and M ∈ R such that∣∣∣∣∣∣
∑
n≤x

f(n)
ns0

∣∣∣∣∣∣ ≤M ∀x ≥ 1

then, for all s ∈ C with σ > σ0 and for a, b ∈ N with 0 < a < b one has the following inequality∣∣∣∣∣∣
∑

a<n≤b

f(n)
ns

∣∣∣∣∣∣ ≤ 2M
aσ−σ0

(
1 +
|s− s0|
σ − σ0

)
.

Proof. Using Abel’s identity B.1 (in the appendix) B with a(n) = f(n)/ns0 to the function g(x) =
1/xs−s0 (Note: A(x) =

∑
n≤x f(n)/ns0), one obtains

∑
a<n≤b

f(n)
ns

= A(b)bs0−s −A(a)as0−s − (s0 − s)
∫ b

a

A(t)ts0−s−1dt.
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Therefore, ∣∣∣∣∣∣
∑

a<n≤b

f(n)
ns

∣∣∣∣∣∣ ≤Mbσ0−σ +Maσ0−σ +

∣∣∣∣∣
∫ b

a

(s0 − s)A(t)ts0−s−1dt

∣∣∣∣∣
≤ 2Maσ0−σ +

∫ b

a

|s0 − s| |A(t)| tσ0−σ−1dt

≤ 2Maσ0−σ + |s0 − s|M
∫ b

a

tσ0−σ−1dt

≤ 2Maσ0−σ + |s0 − s|M
∫ ∞
a

tσ0−σ−1dt

= 2Maσ0−σ +
M |s0 − s| (−aσ0−σ)

(σ0 − σ)

= 2Maσ0−σ
(

1 +
|s− s0|

2(σ − σ0)

)
≤ 2Maσ0−σ

(
1 +
|s− s0|
σ − σ0

)
.

�

1.1.2 Theorem. For every Dirichlet series
∑
f(n)/ns the exist σc, σa ∈ R with −∞ ≤ σc ≤ σa ≤

∞ such that:

1.
∑
f(n)/ns converges if σ > σc and diverges if σ < σc.

2.
∑
f(n)/ns converges absolutely if σ > σa and does not if σ < σa.

3. σa − σc ≤ 1.

Proof. If
∑
f(n)/ns diverges on the whole plane take σc = σa = ∞ and if it converges on the

whole plane take σc = σa = −∞ (the reason for being able to take σa = −∞ will be clear by what
follows). Suppose none of the previous cases takes place and take s0 where

∑
f(n)/ns0 converges

and s ∈ C with σ > σ0. By lema 1.1.1 it follows that for m1,m2 ∈ N with 0 < m1 < m2,∣∣∣∣∣
m2∑
n=1

f(n)
ns
−

m1∑
n=1

f(n)
ns

∣∣∣∣∣ =

∣∣∣∣∣∣
∑

m1<n≤m2

f(n)
ns

∣∣∣∣∣∣ ≤ K

mσ−σ0
1

(1.2)

where K is independent of m1 and m2. Therefore, given that limm1→∞ 1/m1
σ−σ0 = 0, the series

of partial sums is a Cauchy series and so
∑
f(n)/ns converges. It is the clear that the sought for

σc is precisely
σc = inf

{
σ ∈ R

∣∣∣∑ f(n)/nσ converges
}
.

(Note that the set is bounded since
∑
f(n)/ns does not converge on the whole of C.)

Take now s ∈ C with σ > σ0 + 1. Since
∑
f(n)/ns0 converges, limn→∞ f(n)/ns0 = 0 and so

there exists M ∈ R such that |f(n)/ns0 | ≤M for all n. This implies that |f(n)| ≤Mnσ0 , and that∣∣∣∣f(n)
ns

∣∣∣∣ =
|f(n)|
nσ

≤ Mnσ0

nσ
=

M

nσ−σ0
with σ − σ0 > 1.

It follows that
∑
f(n)/ns converges absolutely since

∑
M/nσ−σ0 converges by B.4 given that

σ − σ0 > 1.

Likewise, one can see that if
∑
f(n)/ns0 converges absolutely, so does

∑
f(n)/ns with σ > σ0,

given that ∣∣∣∣f(n)
ns

∣∣∣∣ =
|f(n)|
nσ

≤ |f(n)|
nσ0

=
∣∣∣∣f(n)
ns0

∣∣∣∣ .
Therefore, one can take

σa = inf
{
σ ∈ R

∣∣∣∑ f(n)/nσ converges absolutely
}
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and (2) follows.
(3) follows from the fact that convergence at s0 implies absolute convergence at s for all s ∈ C

with σ > σ0 + 1. �

The previous theorem shows that for every Dirichlet series which converges at some s ∈ C there
exists a half plane Re(s) > σc at which the series converges. In this half plane of convergence the
series represents a function of the complex variable s

F (s) =
∞∑
n=1

f(n)
ns

Re(s) = σ > σc. (1.3)

The next theorem shows that convergence in actually uniform in every compact subset of the half
plane of convergence. From this fact it will follow that F (s) is analytic.

1.1.3 Theorem. The convergence of
∑
f(n)/ns is uniform in every compact subset of the half

plane of convergence σ > σc.

Proof. Let D = [a, b]× [c, d] be with a > σc. Let s ∈ D and σ0 ∈ R with σc < σ0 < a. By the lema
1.1.1 it follows that ∣∣∣∣∣∣

∑
m1<n≤m2

f(n)/ns

∣∣∣∣∣∣ ≤ 2Mmσ0−σ
1

(
1 +
|s− σ0|
σ − σ0

)
.

Since mσ0−σ
1 ≤ mσ0−a

1 and there exists a constant A ∈ R with |s− σ0| < A for all s ∈ D, one
obtains ∣∣∣∣∣∣

∑
m1<n≤m2

f(n)/ns

∣∣∣∣∣∣ ≤ 2Mmσ0−a
1

(
1 +

A

a− σ0

)
= Bmσ0−a

1

where B is independent of s. Given that limm1→∞mσ0−a
1 = 0, the series of partial sums is

uniformly Cauchy and so the series converges uniformly. �

1.1.4 Corollary. The function represented by the Dirichlet series (1.3) is an analytic function of
the complex variable s in its half plane of convergence and

F ′(s) = −
∞∑
n=1

f(n) log n
ns

(1.4)

where log n is the real (and natural) logarithm of n.
Moreover, the expression as Dirichlet series of F ′(s) (1.4) has the same half plane of absolute

convergence as F (s).

Proof. Given that f(n)/ns is an entire function (analytic in the whole complex plane), and the
Dirichlet series is locally uniformly convergent in its half plane of convergence, F (s) is analytic in
its half plane of convergence. The convergence of the derived series (f(n)/ns)′ = −f(n) log(n)n−s

to F ′(s) follows from the fact that convergence is uniform in every compact subset of this half
plane (see appendix A).

Since log n > 1 for n ≥ 2, it is clear that
∑
f(n)/ns converges absolutely if

∑
(f(n) log n)/ns

converges absolutely. To prove the other direction suppose that
∑
f(n)/ns converges absolutely

for σ > σa and take s1 with σ1 > σa. It will follow that
∑

(f(n) log n)/ns1 converges absolutely
since by taking σ0 with σ1 > σ0 > σa one has limn→∞ nσ0−σ1 log n = 0 and so there exists N ∈ N
such that for n ≥ N

log n
nσ1−σ0

≤ 1.

Therefore, for n ≥ N ∣∣∣∣f(n) log n
ns1

∣∣∣∣ =
|f(n)| log n

nσ1
=
|f(n)|
nσ0

log n
nσ1−σ0

≤ |f(n)|
nσ0

.

The result follows since σ0 is in the half plane of absolute convergence of
∑
f(n)/ns. �
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1.2 General Properties

1.2.1 Theorem (Uniqueness). Let F (s) =
∑
f(n)/ns and G(s) =

∑
g(n)/ns be absolutely con-

vergent for σ > σFG. If there exists a series {sk} in the half plane σ > σFG with limk→∞ σk =∞
such that F (sk) = G(sk) for all k, then f(n) = g(n) for all n.

Proof. Define H(s) = F (s)−G(s) and h(n) = f(n)− g(n). By hypothesis H(sk) = 0 for all k and
by the convergence of F and G one has H(s) =

∑
h(n)/ns for σ > σFG.

Suppose the the exists an n where h(n) 6= 0 and let N be the minimum number where this
happens. It follows that

H(s) =
h(N)
Ns

+
∞∑

n=N+1

h(n)
ns

and evaluating at sk (H(sk) = 0) and solving for h(N) one obtains

h(N) = −Nsk

∞∑
n=N+1

h(n)
nsk

.

Let c ∈ R be with c > σFG and define A = (N + 1)c
∑∞
n=N+1 |h(n)| /nc where A < ∞ by the

absolute convergence of F and G. For every σk ≥ c

|h(N)| ≤ Nσk

∞∑
n=N+1

|h(n)|
nσk

= Nσk

∞∑
n=N+1

|h(n)|
nσk−cnc

≤ Nσk

(N + 1)σk−c

∞∑
n=N+1

|h(n)|
nc

=
(

N

N + 1

)σk
(N + 1)c

∞∑
n=N+1

|h(n)|
nc

= A

(
N

N + 1

)σk
.

However, lim
k→∞

(
N

N + 1

)σk
= 0 since lim

k→∞
σk =∞. Therefore, h(N) = 0 which is a contradiction.

�

The following theorem shows one of the most useful properties of Dirichlet series in relation
with number theory.

1.2.2 Theorem. Let F (s) =
∑
f(n)/ns and G(s) =

∑
g(n)/ns be functions represented by

Dirichlet series in σ > σF , σG respectively. In the half plane HFG where both series converge
absolutely one has

F (s)G(s) =
∞∑
n=1

(f ∗ g)(n)
ns

(1.5)

where f ∗ g is the Dirichlet convolution of f and g defined by

(f ∗ g)(n) =
∑
d|n

f(d)g
(n
d

)
=

∑
m1m2=n

f(m1)g(m2). (1.6)

Moreover, the Dirichlet series (1.5) also converges absolutely in HFG.

Proof. For any s ∈ C where both series converge absolutely we have

F (s)G(s) =

( ∞∑
n=1

f(n)
ns

)( ∞∑
m=1

g(m)
ms

)
=
∑
n,m≥1

f(n)g(m)
(nm)s

where the expression on the right is an absolutely convergent double series. Since any absolutely
convergent double series can be rearranged in any simple series ([Apo67], pgs. 373-375), one can
group the terms where mn = k is constant to obtain

F (s)G(s) =
∞∑
k=1

∑
nm=k f(n)g(m)

ks
=
∞∑
n=1

(f ∗ g)(n)
ns

.

�
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1.3 Representation as Infinite Products

The representation of Dirichlet series as infinite products follows from a theorem discovered by
Euler in 1737. This theorem (stated and proved in what follows) is sometimes referred to as the
analytic version of the fundamental theorem of arithmetic (representation in essentially a unique
way of natural numbers as product of prime powers).

Throughout this section and what follows of this thesis, the notations
∑
p a(p) and

∏
p a(p)

will be used for series and products over the set of prime numbers in ascending order. As an
example,

∏
p a(p) will mean

∏∞
n=1 a(pn) where pn is the n-th prime number. Before the theorem

we introduce the following

1.3.1 Definition. Let a : N→ C be different from zero for some n. a(n) is said to be multiplicative
if a(nm) = a(n)a(m) whenever (n,m) = 1 (the greatest common divisor of n and m). a(n) is said
to be completely multiplicative if a(nm) = a(n)a(m) for any n,m ∈ N.

(Note that if a(n) is multiplicative, then a(1) = 1.)

1.3.2 Theorem (Euler’s Product Identity). Let a : N → C and suppose that
∑
a(n) converges

absolutely. If a(n) is multiplicative, then

∞∑
n=1

a(n) =
∏
p

(
1 +

∞∑
n=1

a(pn)

)
. (1.7)

If a(n) is completely multiplicative,

∞∑
n=1

a(n) =
∏
p

(
1

1− a(p)

)
. (1.8)

Proof. Given that
∑
a(n) is absolutely convergent, the series

∑∞
n=1 a(pn) is absolutely convergent

for each prime p since this is a subseries of
∑
a(n). Define

Pk =
∏
p≤k

(
1 +

∞∑
n=1

a(pn)

)

where the product is taken over all primes less that or equal to k. Pk is a finite product of
absolutely convergent series. Applying inductively the the theorems on products of absolutely
convergent series as double series and rearranging these as simple series it follows that Pk can be
expressed as an absolutely convergent simple series whose terms (with the exception of 1) are of
the form

a(pα1
1 )a(pα2

2 ) . . . a(pαtt ) = a(pα1
1 pα2

2 . . . pαtt )

with pi ≤ k different primes and αi > 0 for i = 1, . . . , t. The last equality is due to the fact that
a(n) is multiplicative.

By the fundamental theorem of arithmetic there will be only one term a(pα1
1 pα2

2 . . . pαtt ) for
each choice of primes smaller than k and exponents αi > 0. Taking Ak ⊂ N as the set of natural
numbers whose prime decomposition only contains primes smaller than k (including 1) it follows
that

Pk =
∑
n∈Ak

a(n).

Therefore, ∣∣∣∣∣
∞∑
n=1

a(n)− Pk

∣∣∣∣∣ =

∣∣∣∣∣∣
∑
n/∈Ak

a(n)

∣∣∣∣∣∣ ≤
∑
n/∈Ak

|a(n)| ≤
∑
n≥k

|a(n)|

since n ≥ k if n /∈ Ak. By the absolute convergence of
∑
a(n) one has that limk→∞

∑
n≥k |a(n)| =

0, and so
∞∑
n=1

a(n) = lim
k→∞

Pk =
∏
p

(
1 +

∞∑
n=1

a(pn)

)
.
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If a(n) is completely multiplicative, |a(p)| < 1 for every prime p since otherwise
∑∞
n=1 |a(pn)| =∑∞

n=1 |a(p)|n would diverge contradicting the absolute convergence of
∑
a(n). Therefore, For every

prime p

1 +
∞∑
n=1

a(pn) =
∞∑
n=0

[a(p)]n =
1

1− a(p)
.

�

The representation of these series as products allows us to prove the following non trivial
corollary based on the properties of infinite products included in the appendix C.

1.3.3 Corollary. If
∑
a(n) converges absolutely and a(n) is completely multiplicative then

∑
a(n) 6=

0.

Proof. Given (1.8), one only has to prove that the product is different from zero. Since
∑
p a(p)

converges absolutely and a(p) 6= −1 for every prime (by arguments in the previous theorem), it
follows from C.4 in the appendix that

∏
p[1−a(p)] converges and is different from zero. Therefore,

by theorem C.2 one has

∞∑
n=1

a(n) =
∏
p

(
1

1− a(p)

)
=

1∏
p[1− a(p)]

6= 0.

�

1.3.4 Corollary (Representation as Products). Let
∑
f(n)/ns be an absolutely convergent Dirich-

let series for σ > σa and suppose that f(n) is multiplicative. Then, in the half plane of absolute
convergence

∞∑
n=1

f(n)
ns

=
∏
p

(
1 +

∞∑
n=1

f(pn)
pns

)
σ > σa.

If f(n) is completely multiplicative, then

∞∑
n=1

f(n)
ns

=
∏
p

(
1

1− f(p)p−s

)
6= 0

for every s ∈ C with σ > σa.

Proof. Take a(n) = f(n)/ns and use 1.3.2 and 1.3.3 taking into account that a(n) is multiplicative if
f(n) is multiplicative and that a(n) is completely multiplicative if f(n) is completely multiplicative
since

a(nm) =
f(nm)
(nm)s

=
f(n)f(m)
nsms

=
f(n)
ns

f(m)
ms

= a(n)a(m).

�

1.4 The Multiplicative inverse of a Dirichlet Series

From corollary 1.3.4 it follows that Dirichlet series are different from zero in their half plane of
absolute convergence if their coefficients are completely multiplicative. In this section a Dirichlet
series for (

∑
f(n)/ns)−1 will be calculated in this half plane.

The sought for series will be a consequence of a more general theorem where a series for
(
∑
a(n))−1 is computed when

∑
a(n) is absolutely convergent and a(n) is completely multiplica-

tive. Under these hypothesis,
1∑
a(n)

=
∏
p

[1− a(p)] (1.9)

by 1.3.2 and 1.3.3.
If one wishes to express (

∑
a(n))−1 as a series it is only natural to use (1.9) to find this series.

Define Pk =
∏
p≤k[1 − a(p)]. If one expands this finite product the result will be a sum with

terms of the form
(−1)ra(p1)a(p2) . . . a(pr) = (−1)ra(p1p2 . . . pr)

9



with p1, . . . , pr different primes less than k.
If we define again Ak ⊂ N as the integers whose prime divisors are all less than or equal than

k one is led naturally to define µ : N→ R by

µ(n) =

 1 if n = 1
(−1)k if n is the product of k different primes
0 otherwise

(1.10)

(this function is known as the Möbius µ function) to write Pk =
∑
n∈Ak µ(n)a(n) from which one

conjectures that
1∑
a(n)

=
∞∑
n=1

µ(n)a(n).

The last equation is actually true and is proved in the next theorem.

1.4.1 Theorem. Let a(n) be completely multiplicative and suppose that
∑
a(n) converges abso-

lutely. Then, ( ∞∑
n=1

a(n)

)−1

=
∞∑
n=1

µ(n)a(n)

where µ is the Möbius µ function defined by (1.10). The series on the right converges absolutely .

Proof.
∑
µ(n)a(n) converges absolutely since |µ(n)a(n)| ≤ |a(n)|. Using the same notation as in

the previous discussion one has∣∣∣∑µ(n)a(n)− Pk
∣∣∣ ≤ ∑

n/∈Ak

|µ(n)a(n)| ≤
∑
n≥k

|µ(n)a(n)| .

Now, since the term on the right tends to zero when k →∞,

∞∑
n=1

µ(n)a(n) = lim
k→∞

Pk =

( ∞∑
n=1

a(n)

)−1

.

�

1.4.2 Corollary (The Multiplicative inverse of a Dirichlet Series). Let
∑
f(n)/ns be a Dirichlet

series with non empty half plane of convergence and suppose that f(n) is completely multiplicative.
Then, in the half plane of absolute convergence σ > σa it is true that( ∞∑

n=1

f(n)
ns

)−1

=
∞∑
n=1

µ(n)f(n)
ns

and the Dirichlet series on the right also converges absolutely for σ > σa.

1.5 The Logarithm of a Dirichlet Series

Given that the logarithmic function is not single valued on the complex numbers, the logarithm of
a Dirichlet series cannot be expressed as a Dirichlet series since the later are single valued. We will
find however a Dirichlet series which serves as one of the logarithms of any given Dirichlet series.

The first step will be to find a Dirichlet series for F ′(s)/F (s) under some restrictions to F and
to find the sought for series from this one. The following function, and accompanying property
will result extremely useful.

1.5.1 Definition. The von Mangoldt function Λ : N→ R is defined by:

Λ(n) =
{

log p if n = pk with p prime and k ≥ 1
0 otherwise

1.5.2 Lema. If f(n) is completely multiplicative and g is defined as g(n) = f(n)Λ(n) (g = fΛ),
then

(g ∗ f)(n) = f(n) log n.
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Proof. Since f(n) is completely multiplicative,

(g ∗ f)(n) =
∑
d|n

f(d)Λ(d)f
(n
d

)
= f(n)

∑
d|n

Λ(d)

and so it suffices to prove that ∑
d|n

Λ(d) = log n. (1.11)

If n = 1 the equality is satisfied so assume n > 1 and write n = pα1
1 pα2

2 . . . pαkk . Evaluating the left
had side of (1.11) one gets

∑
d|n

Λ(d) =
k∑
i=1

αi∑
j=1

Λ(pji ) =
k∑
i=1

αi log pi = log n.

since for every divisor d of n, Λ(n) 6= 0 if and only if d is a power of a prime. �

1.5.3 Theorem. Let F (s) =
∑
f(n)/ns be a Dirichlet series with f(n) completely multiplicative.

For any s in the half plane of absolute convergence of F (s),

F ′(s)
F (s)

= −
∞∑
n=1

f(n)Λ(n)
ns

where the Dirichlet series on the right also converges absolutely in the same half plane.

Proof. Let HF be the half plane of absolute convergence of F and define G by

G(s) = −
∞∑
n=1

f(n)Λ(n)
ns

.

It suffices to prove that F ′/F = G or equivalently that F ′ = GF .
Now, G converges absolutely in HF since

F ′(s) = −
∞∑
n=1

f(n) log(n)
ns

converges absolutely in HF and |f(n)Λ(n)/ns| ≤ |f(n) log(n)/ns| for all n. Therefore, by the
theorem 1.2.2 on products of absolutely convergent Dirichlet series,

G(s)F (s) = −
∞∑
n=1

(fΛ ∗ f)(n)
ns

.

And so, by lema lema 1.5.2, F ′ = GF in HF since fΛ ∗ f = f log. �

1.5.4 Lema. If
∑
f(n)/ns has a non empty half plane of absolute convergence,

lim
σ→∞

∞∑
n=2

f(n)
ns

= 0.

Proof. Choose a real c in the half plane of absolute convergence and define

A =
∞∑
n=2

|f(n)|
nc

.

For every s ∈ C with σ ≥ c one has∣∣∣∣∣
∞∑
n=2

f(n)
ns

∣∣∣∣∣ ≤
∞∑
n=2

|f(n)|
nσ

=
∞∑
n=2

|f(n)|
ncnσ−c

≤ A

2σ−c
.

The theorem follows from the fact that limσ→∞A/2σ−c = 0. �
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1.5.5 Theorem (Logarithm of a Dirichlet Series). Let F (s) =
∑
f(n)/ns be a Dirichlet series

f(n) completely multiplicative. For any s in the half plane of absolute convergence one has

F (s) = eG(s)

where

G(s) =
∞∑
n=2

f(n)Λ(n)
ns log n

.

Proof. Let HF be the half plane of absolute convergence of F (s). Since F (s) 6= 0 in HF (Corollary
1.4.2) and F is analytic in HF , there exists an analytic function G(s) defined on HF which satisfies
(look for example in [Con73], p. 87)

F (s) = eG(s) s ∈ HF .

Differentiating this equation one obtains F ′(s) = G′(s)eG(s) = G′(s)F (s). Therefore,

G′(s) =
F ′(s)
F (s)

= −
∞∑
n=2

f(n)Λ(n)
ns

(1.12)

by theorem 1.5.3. Integrating term by term which is possible since convergence is locally uniform
in HF , one obtains

G(s) = C +
∞∑
n=2

f(n)Λ(n)
ns log n

.

Lema 1.5.4 is used to find C. Given that F (s) = eG(s) and that the exponential is continuous,

lim
σ→∞

F (s) = elimσ→∞G(s)

which by the lema translates into f(1) = eC . However, since f(n) is multiplicative and different
form zero for at least some n, f(1) = 1 and so C is a complex logarithm of 1. In particular one
can take C = 0. �

The Dirichlet series for G(s) can also be obtained from the product representation of F (s)
(1.3.4). This alternate way gives some motivation for the definition of the Λ(n) function but uses
more delicate arguments. One basically uses the fact that∑

p

− log(1− f(p)/ps)

converges where log stands for the principal branch of the logarithm (argument between −π and
π). This is proved using the Taylor series of log(1−z) (the principal branch) convergent for |z| < 1.
Note that |f(p)/ps| < 1 for every prime p under the hypothesis of the theorem. Using this fact and
the continuity of the exponential function, the series is a logarithm of F (s). After some algebraic
manipulation one manages to rewrite this series as a Dirichlet series (Look for example in [Apo76]
or [Jam03]).

1.6 An Application: Möbius Inversion

On section 1.4 it was seen how Euler’s product formula motivates the definition of the Möbius µ
function. In this section, somehow outside the main theme of this work, we will se how the use
of Dirichlet series leads naturally to the number theoretic formula known as the Möbius inversion
formula from classical number theory.

Suppose one has complex sequences {an}n∈N,{bn}n∈N satisfying

an =
∑
d|n

bd

and one wishes to find an expression for bn in terms of the sequence {an}n∈N.
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Theorem 1.2.2 on products of Dirichlet series suggests considering the Dirichlet series
∑

1/ns

(convergence issues will be ignored since they will be studied in the next chapter) since if
∑
an/n

s,
∑
bn/n

s

and
∑

1/ns converge for some s ∈ C then by the theorem one can write∑ an
ns

=
(∑ bn

ns

)(∑ 1
ns

)
for every s ∈ C where all series converge absolutely.

By 1.4.2 one also has that
1∑
1/ns

=
∑ µ(n)

ns
,

and so, ∑ bn
ns

=
(∑ an

ns

)(∑ µ(n)
ns

)
=
∑ (µ ∗ a)(n)

ns
.

Therefore, by the theorem on uniqueness of coefficients 1.2.1 one will have

bn =
∑
d|n

adµ
(n
d

)
.

This last result is precisely the Möbius inversion formula and is widely used in classical number
theory. It is worthwhile to point out that it is true without the requirement on the convergence of
the Dirichlet series used in the previous argument and its proof is elementary but ill-motivated. In
this context, the hypothesis on the convergence of the series can be avoided by defining a′n = an if
n < N and zero otherwise (likewise with bn) and proving the formula inductively.
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Chapter 2

Riemann’s ζ function

2.1 Definition of the ζ function and general properties

The Riemann ζ function is defined as the series
∑∞
n=1 1/ns wherever it converges. The next

theorem describes the region where it converges.

2.1.1 Theorem. The Dirichlet Series
∑

1/ns converges absolutely if σ > 1 and diverges if σ < 1.
In this way, following the notation of theorem 1.1.2, σa = σc = 1.

Proof. One has |1/ns| = 1/nσ. Absolute convergence for σ > 1 follows from the convergence of
the integral

∫∞
1

1/xσdx. The statement follows from 1.1.2 since
∑

1/n diverges. �

2.1.2 Definition. Riemann’s ζ function is defined for Re s > 1 by

ζ(s) =
∞∑
n=1

1
ns
.

In what follows, the consequences from the theory on general Dirichlet Series to the Riemann
ζ function will be given. In all of them s will be assumed to have real part σ > 1.

2.1.3 Theorem. The ζ function is analytic and ζ ′(s) can be expressed as an absolutely convergent
Dirichlet Series for σ > 1 by

ζ ′(s) = −
∞∑
n=1

log n
ns

.

2.1.4 Theorem. ζ admits the following representation as an infinite product over the prime num-
bers

ζ(s) =
∏
p

(
1− 1

ps

)−1

=
∏
p

ps

ps − 1
.

2.1.5 Theorem. ζ(s) 6= 0.

Proof. By the product representation. �

2.1.6 Theorem. The function 1/ζ(s) is analytic and can be expressed as an absolutely convergent
Dirichlet Series for σ > 1 by:

1
ζ(s)

=
∞∑
n=1

µ(n)
ns

,

where µ is the Möbius µ function defined in (1.10).

2.1.7 Theorem. ζ ′/ζ can be expressed as an absolutely convergent Dirichlet Series for σ > 1 by

ζ ′(s)
ζ(s)

= −
∞∑
n=1

Λ(n)
ns

,

where Λ(n) is the von Mangoldt function defined in 1.5.1.
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2.1.8 Definition. log ζ(s) is defined for Re s > 1 by

log ζ(s) =
∞∑
n=2

Λ(n)/ log n
ns

.

2.1.9 Theorem. log ζ(s) is a logarithm of ζ(s) (elog ζ(s) = ζ(s)), it is real when s is real, and the
Dirichlet Series which represents is absolutely convergent where it is defined (Re s > 1).

2.2 Relation of the ζ with Number Theory

In this section, the relations between the ζ function and Number Theory will be explored. The
first mathematician to note the connections between ζ and the integers was Euler. His studies
concerning the ζ function led him to results such as 1.3.2 and an analytic proof in the infinitude of
prime numbers, which will be shown in what follows. The content of this section will not be used
in other parts of this document.

2.2.1 Lema. For real σ with σ > 1, ζ(σ) ≥ 1/(σ − 1).

Proof. By B.3,
N∑
n=1

1
nσ

>

∫ N

1

1
xσ
dx =

1−N1−σ

σ − 1
.

The result follows making N →∞. �

2.2.2 Theorem (Modification of Euler’s Proof). There exist an infinite amount of Prime numbers.

Proof. Take the equality ζ(σ) =
∏
p (1− p−σ)−1 with real σ > 1 and make σ → 1+. The existence

of only a finite number of primes would imply that the product converges to the rational number∏
p

(
1− p−1

)−1 but this contradicts the fact that ζ(σ) is unbounded when σ → 1+ by the previous
lema. �

Even if it seems like a very long road to prove a theorem that has proofs as simple as the
one given in Euclid’s Elements, its importance lies in the fact that it was the first proof in which
the tools of analysis were used to prove facts about integers. Moreover, the proof establishes a
link between the Fundamental Theorem of Arithmetic and the existence of infinite primes since
the representation of ζ as an infinite product from 2.1.4 is obtained almost as a consequence of
Fundamental Theorem of Arithmetic.

One can also prove the divergence of the series
∑
p 1/p following the previous line of proof, as

was first done by Euler. I will not develop on such a proof, but the interested reader can take a
look of a proof of this fact using the ζ function in [Gro84]. Euler’s original proof of theorem 2.2.2
may be found in [Dia96].

There are certain very intriguing equalities concerning the ζ function and common arithmetic
functions in Elementary Number Theory. Some of these equalities will be shown in what follows.
Definitions of the functions concerned are included as reference.

2.2.3 Definition. φ(n) is the number of integers ≤ n which are relatively prime with n.

φ is known as the Euler φ function. The following property of φ can be found on any text of
Elementary Number Theory. (eg, [Rub99], pg. 74).

2.2.4 Theorem.
∑
d|n φ(d) = n for all n.

2.2.5 Theorem.
∑
φ(n)/ns converges absolutely for Re s > 2 and

∞∑
n=1

φ(n)
ns

=
ζ(s− 1)
ζ(s)

=
∏
p

1− p−s

1− p1−s .

Proof. Absolute convergence follows from the fact that φ(n) ≤ n, therefore
∑
φ(n)/ns ≤

∑
1/ns−1 =

ζ(s− 1). For the first equality note that by theorems 2.2.4 and 1.2.2,

ζ(s)
∞∑
n=1

φ(n)
ns

=
∞∑
n=1

∑
d|n φ(d)

ns
=
∞∑
n=1

n

ns
= ζ(s− 1).

The equality follows since ζ(s) 6= 0. The second equality is a consequence of 2.1.4. �
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2.2.6 Definition. The function σα with α ∈ C is defined by

σα(n) =
∑
d|n

dα.

σ0 is usually denoted by τ . Note that τ(n) is the number of divisors of n. σ1, the sum of the
divisors of n is usually denoted by σ.

2.2.7 Theorem.
∑
σα(n)/ns converges absolutely for Re s > max{1, 1+Re α} and

∞∑
n=1

σα(n)
ns

= ζ(s)ζ(s− α).

Proof. Take f(n) = nα. Since
∑
f(n)/ns = ζ(s − α),

∑
f(n)/ns converges absolutely for Re

s > 1+Re α. This implies that

ζ(s)ζ(s− α) =
∞∑
n=1

∑
d|n f(d)

ns
=
∞∑
n=1

σα(n)
ns

converges absolutely for Re s > max{1, 1+Re α}. �

The previous equalities can be used to prove identities about convolution in a very straight
forward manner. For example, the identity∑

d|n

φ(d)τ(n/d) = σ(n)

is a direct consequence of
ζ(s− 1)
ζ(s)

ζ2(s) = ζ(s− 1)ζ(s)

by the theorems on products of Dirichlet Series and uniqueness of coefficients since
∑
d|n φ(d)τ(n/d) =

(φ ∗ τ)(n).
The following result if of great importance since from it one can deduce the equation which

Riemann used in his revolutionary (and only) article on Number Theory (See [Gro84] and [Rie59]).

2.2.8 Theorem. Denote by π(x) the number of primes which are ≤ x and consider σ ∈ R with
σ > 1. Then,

log ζ(σ) = σ

∫ ∞
2

π(x)
x(xσ − 1)

dx.

Proof. Given the equality ζ(σ) =
∏
p (1− p−σ)−1,

log ζ(σ) = −
∑
p

log(1− p−σ)

= −
∑∞

n=2
[π(n)− π(n− 1)] log(1− n−σ)

were the last equality follows from the fact that π(n) − π(n − 1) is the characteristic function of
prime numbers.

Using Abel’s Identity B.1 with a(n) = π(n) − π(n − 1), f(x) = log(1 − x−σ), y = 2 and
x = N > 2 one obtains

N∑
n=3

a(n) log(1− n−σ) =π(N) log(1−N−σ)− π(2) log(1− 2−σ)

− σ
∫ N

2

π(x)
x(xσ − 1)

dx

since A(x) =
∑
n≤x[π(n)− π(n− 1)] = π(x) and so,

N∑
n=2

[π(n)− π(n− 1)] log(1− p−σ) = π(N) log(1−N−σ)− σ
∫ N

2

π(x)
x(xσ − 1)

dx.

However, since π(n) ≤ n, limN→∞ π(N) log(1 − N−σ) = 0 and the equality follows by taking
N →∞. �

It can be proved that the previous equality also holds replacing σ by s ∈ C with Re s > 1 and
taking log ζ(s) as the function defined in 2.1.8.

16



2.3 Analytic Continuation of ζ

This section relies heavily on the properties (analyticity in particular) of functions defined by
a certain type of integral known as Dirichlet Integrals. The following theorem is proved in the
Appendix D. Note the similarity with 1.1.4.

2.3.1 Theorem (Appendix D.3). Let N ∈ N, N 6= 0 and f : [N,∞) → C continuous except
possibly at N ∩ [N,∞) where however, right and left limits exist. If there exist M,α ∈ R such that
|f(x)| ≤Mxα, then ∫ ∞

N

f(x)
xs+1

dx

converges for s ∈ C with σ > α and if one defines I(s) as the value of this integral, then I(s) is
analytic in Re s > α and its derivative is given by

I ′(s) = −
∫ ∞
N

f(x) log x
xs+1

dx.

The next theorem shows us a way to express ζ in terms of integrals. Its main use is that the
expression is analytic in a region larger than Re s > 1. This allows to extend the definition of the
ζ function.

2.3.2 Theorem. The following equality is valid for all N ∈ N

ζ(s) =
N∑
n=1

1
ns

+
N1−s

s− 1
− s

∫ ∞
N

x− [x]
xs+1

dx Re s > 1

and the integral on the right is analytic (as a function of s) in the half-plane Re s > 0.

Proof. Taking f(x) = 1/xs in Euler’s Summation Formula B.2 with y = N , x = M > N , N and
M integers,

M∑
n=N+1

1
ns

=
∫ M

N

1
xs
dx− s

∫ M

N

x− [x]
xs+1

dx. (2.1)

Take s with σ > 1 and make M →∞ in (2.1). All the terms converge since the sum is the tail of
the ζ function and the integrals satisfy the hypothesis in 2.3.1. Therefore,

∞∑
n=N+1

1
ns

=
∫ ∞
N

1
xs
dx− s

∫ ∞
N

x− [x]
xs+1

dx.

Evaluating the integral on the left and adding
∑N
n=1 1/ns on both sides of the equation one obtains

the stated equality. The fact that

−s
∫ ∞
N

x− [x]
xs+1

dx

is analytic for σ > 0 is a consequence of 2.3.1 taking f(x) = x− [x] ≤ 1 and α = 0. �

The expression obtained using N = 1 in 2.3.2 is particularly simple and motivates the following.

2.3.3 Definition. ζ(s) is defined for Re s > 0, s 6= 1 by

ζ(s) = 1 +
1

s− 1
− s

∫ ∞
1

x− [x]
xs+1

dx.

From now onwards, whenever we mention the function ζ we will be referring to the function
in the previous definition. It is clear that by theorem 2.3.2, this function coincides with

∑
1/ns

if σ > 1. It should be noticed however that the theorems proved before 2.3.2 are only valid for
σ > 1.

In particular, Riemann’s Hypothesis, still without proof, states that the only zeros of ζ with
positive real part have real part σ = 1/2 (this did not make sense before the analytic continuation).
Note that 2.1.5 guarantees that if any zeros exist, these must have real part σ ≤ 1. An essential
part of the proof of the Prime Number Theorem that will be shown in this document will depend
essentially on the behaviour of the zeros with σ = 1. It will be shown in the next section that ζ
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has no zeros with real part σ = 1 by the use of some quite technical but very ingenious arguments.
The behaviour of the zeros of ζ has eluded the efforts of the most eminent mathematicians. It
seems incredible that no mathematician has even been able to prove the existence of a region of
the form Re s ≥ c with c < 1 where ζ has no zeros.

As a last comment about Riemann’s Hypothesis, the restriction zeros with real part comes from
the fact that the ζ function can be continued analytically to the whole complex plane with the
use o a functional equation initially discovered by Euler in the real case and finally proved by
Riemann. This continuation has zeros in the negative even integers and it is know that they are
the only zeros with negative real part. This continuation however will be of no use in the present
document, but the interested reader may look in [Apo76], [Gro84] or [Jam03] for the details.

2.3.4 Theorem. ζ is analytic in Re s > 0 except at the point s = 1 where it has a simple pole
with residue 1.

Proof. Simply note that

ζ(s)− 1
s− 1

= 1− s
∫ ∞

1

x− [x]
xs+1

dx

and the expression on the right is analytic for s > 0 by the previous theorem. �

2.3.5 Corollary. lims→1(s− 1)ζ(s) = 1

Now we will prove that the identities in 2.3.2 are still valid for our new ζ function. They are
of course still true if Re s > 1 and by a simple application of a theorem on uniqueness of analytic
continuation one can conclude that it is still valid for Re s > 0. However, a direct proof can be
given:

2.3.6 Theorem. For Re s > 0 and for every N ∈ N with N > 1, ζ(s) can be expressed as

ζ(s) =
N∑
n=1

1
ns

+
N1−s

s− 1
− s

∫ ∞
N

x− [x]
xs+1

dx.

Proof. By definition,

ζ(s) = 1 +
1

s− 1
− s

∫ ∞
1

x− [x]
xs+1

dx. (2.2)

Taking f(x) = 1/xs in Euler’s Summation Formula B.2 with y = 1 and x = N one obtains

N∑
n=2

1
ns

=
∫ N

1

1
xs
dx− s

∫ N

1

x− [x]
xs+1

dx. (2.3)

Evaluating the first integral and adding 1 in (2.3) it follows that

N∑
n=1

1
ns

= 1 +
1

s− 1
− N1−s

s− 1
− s

∫ N

1

x− [x]
xs+1

dx. (2.4)

Finally, subtracting (2.4) from (2.2) one obtains the desired identity. �

2.3.7 Theorem. For Re s > 0 and s 6= 1,

ζ ′(s) = −
N∑
n=1

log n
ns

+ s

∫ ∞
N

(x− [x]) log x
xs+1

dx−
∫ ∞
N

x− [x]
xs+1

dx

− N1−s logN
s− 1

− N1−s

(s− 1)2
.

Proof. The usual rules of differentiation and theorem 2.3.1 for the derivative of the integral. �
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2.4 Proof of ζ(1 + it) 6= 0 for t 6= 0

2.4.1 Lema. Let F (s) =
∑
f(n)/ns be an absolutely convergent Dirichlet Series for σ > σa with

f real and positive. If s = σ + it with σ > σa, then

3F (σ) + 4Re F (σ + it) + Re F (σ + 2it) ≥ 0.

Proof. One has

3F (σ) + 4F (σ + it) + F (σ + 2it) =
∞∑
n=1

f(n)
nσ

(3 + 4n−it + n−2it).

Taking real parts and noticing that Re n−ai = Re e−ia logn = cos(a log n) it follows that

3F (σ) + 4Re F (σ + it) + Re F (σ + 2it) =
∞∑
n=1

f(n)
nσ

(3 + 4 cos(t log n) + cos(2t log n)). (2.5)

However, for every α ∈ R,

3 + 4 cos(α) + cos(2α) = 2 + 4 cos(α) + 2 cos2(α) = 2(1 + cos(α))2 ≥ 0.

Therefore, the Dirichlet Series in (2.5) is ≥ 0 since f is positive. �

2.4.2 Corollary. If σ > 1 then

ζ3(σ) |ζ(σ + it)|4 |ζ(σ + 2it)| ≥ 1.

Proof. Consider the function log ζ(s) defined by 2.1.8. Since log |ζ(s)| = Re log ζ(s), log ζ(s) is
real when s is real, and Λ(n) is positive. It follows by lema 2.4.1 that

ζ3(σ) |ζ(σ + it)|4 |ζ(σ + 2it)| = e3 log ζ(σ) + 4 log |ζ(σ + it)|+ log |ζ(σ + i2t)|

≥ e0 = 1.

�

The following theorem, proved independently by Hadamard and de la Valle Poussin, was the
first result on the zeros of ζ in the region 0 ≤ Re s ≤ 1. Using this result, they also independently
gave the first proofs of the Prime Number Theorem. The ideas present in the present exposition
are simplifications made by Mertens and de la Valle Poussin of an argument of Hadamard.

2.4.3 Theorem. ζ(1 + it) 6= 0 for t 6= 0.

Proof. By the previous corollary, if σ > 1 then

ζ3(σ) |ζ(σ + it)|4 |ζ(σ + 2it)| ≥ 1.

multiplying and dividing by (σ − 1)4 one obtains,

[(σ − 1)ζ(σ)]3
∣∣∣∣ζ(σ + it)
σ − 1

∣∣∣∣4 |(σ − 1)ζ(σ + i2t)| ≥ 1. (2.6)

If one assumes the existence of a t 6= 0 such that ζ(1 + it) = 0 one reaches a contradiction with
the previous inequality taking σ → 1+ since the term [(σ − 1)ζ(σ)]3 → 1 by 2.3.5, the term
|(σ − 1)ζ(σ + i2t)| → 0 because ζ(σ + i2t)→ ζ(1 + i2t) by continuity, and the limit

lim
σ→1+

ζ(σ + it)
σ − 1

exists since under the hypothesis ζ(1 + it) = 0, and so it is simply ζ ′(1 + it) which is finite since ζ
is analytic. In this manner,

lim
σ→1+

[(σ − 1)ζ(σ)]3
∣∣∣∣ζ(σ + it)
σ − 1

∣∣∣∣4 |(σ − 1)ζ(σ + i2t)| = 0

which contradicts (2.6). �

For the chain of ideas that led Hadamard to these arguments look in [Gol73].
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Chapter 3

The Prime Number Theorem

The Prime Number Theorem (PNT) states that:

lim
x→∞

π(x)
x/ log x

= 1 (3.1)

where π(x) is the number of primes ≤ x. The asymptotic equality in (3.1) is usually expressed as
π(x) ∼ x/ log(x) adopting the convention that f(x) ∼ g(x) means limx→∞ f(x)/g(x) = 1.

Given the analytic properties of Dirichlet Series, and the close relationship which these have
with the multiplicative structure of the integers, Dirichlet series become a valuable tool for the
study of multiplicative functions since the behaviour of the series can shed light on the nature of
its coefficients. The purpose of this chapter is to show one of the ways in which Dirichlet Series
allow one to understand the nature of its coefficients. This will eventually result in a proof of the
PNT. In essence, the arguments which follow come from [Jam03] which in turn is a generalization
of one of the various proofs of the PNT using Complex Analysis. Even though this exposition
somewhat obscures the proof of the PNT, it shows that a more general result is valid.

3.1 Strategy and Main Ideas of the Proof

As was already said, the main idea is to take the Dirichlet Series F (s) =
∑
f(n)/ns and obtain

information about the coefficients from the analytical properties of F . Specifically, an asymptotic
identity involving the partial sums Sf (x) =

∑
n≤x f(n) will be obtained. In the case of the PNT

the idea is of course to take f(n) bearing some relation with prime numbers.
A first choice for f would of course be the characteristic function of prime numbers in which

case Sf (x) = π(x). However, this f is not multiplicative and so various of the theorems proved
about Dirichlet Series are not applicable. It will be noticed later that they turn out to be essential
in the proof of the PNT. As far as I am aware of, there is no analytical proof of the PNT using
π(x) directly.

Even thought the relation between Dirichlet Series and prime numbers is now evident (partic-
ularly by Euler’s Product Identity), a relationship between prime numbers and f(n) is only found
when f is completely multiplicative. If this is the case, the Dirichlet Series for F ′(s)/F (s) from
theorem 1.5.3 has the form:

F ′(s)
F (s)

= −
∞∑
n=2

f(n)Λ(n)
ns

(alternatively for the series logF (s) of theorem 1.5.5), where Λ is defined by

Λ(n) =
{

log p if n = pk with p prime and k ≥ 1
0 otherwise.

This takes a particularly simple form by taking ζ as F (that is, f(n) = 1). It is worthwhile to
point out the fact that the preceding discussion is far from what historically happened. Actually,
the inverse process took place, that is, the properties of the ζ function where discovered and they
were later generalized to become the theory of Dirichlet Series introduced in the first chapter of
this document. In any way however, one has

−ζ
′(s)
ζ(s)

=
∞∑
n=2

Λ(n)
ns

.
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The partial sums of the coefficients of this series deserve their own name.

3.1.1 Definition. Chebyshev’s ψ function is is defined by

ψ(x) =
∑
n≤x

Λ(n).

The importance of ψ(x) rests on the fact that if in fact π(x) ∼ x/ log x, then ψ(x) should
behave like x. To see this (heuristically) note for a fixed prime p ≤ x, there are exactly [logp x]
powers of p less than x since [logp x] is the greatest integer power of p less than x. Therefore, given
that logp x = log x/ log p,

ψ(x) =
∑
n≤x

Λ(n) =
∑
p≤x

[
log x
log p

]
log p.

In this way,

ψ(x) =
∑
p≤x

[
log x
log p

]
log p '

∑
p≤x

log x
log p

log p = log x
∑
p≤x

1 ' x

where the last approximation comes from the fact that if π(x) ∼ x/ log x, then in a sum of the
form

∑
p≤x there are approximately x/ log x terms. The following theorem is a rigorous proof if

this fact.

3.1.2 Theorem. ψ(x) ∼ x if and only if π(x) ∼ x

log x
.

Proof. By the previous arguments,

ψ(x) =
∑
p≤x

[
log x
log p

]
log p ≤

∑
p≤x

log x
log p

log p = π(x) log x. (3.2)

Take 1 < y < x and notice that

π(x) = π(y) +
∑

y<p≤x

1 ≤ π(y) +
∑

y<p≤x

log p
log y

≤ y +
ψ(x)
log y

.

Therefore, putting y = x/ log2 x one obtains

π(x) ≤ x

log2 x
+

ψ(x)
log x− 2 log log x

(3.3)

and combining the inequalities (3.2) and (3.3) it follows that

ψ(x)
x
≤ π(x)
x/ log x

≤ 1
log x

+
ψ(x)
x

log x
log x− 2 log log x

from which the statement follows. �

In what follows, an exposition showing that the properties of ζ ′/ζ imply ψ(x) ∼ x will be given.
The arguments are quite long and complicated. An essential part of the argument will require the
use of the analyticity of ζ ′(s)/ζ(s) on the line Re s = 1, s 6= 1. This is the reason why the fact
that ζ(1 + it) 6= 0 for t 6= 0 is of so much importance.

It is worthwhile mentioning the fact that shortly after the PNT was proved, it was shown that
ζ(1 + it) 6= 0 for t 6= 0 is in fact equivalent to the PNT (see [Dia96]).

3.2 Technical Preliminaries

Some results from complex analysis will be needed for the proof of the Main Theorem. The proofs
are given in this section. The following definition will be of great use to state the propositions
more clearly.
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3.2.1 Definition. Let f(s) be a complex function, analytic in some open set containing the vertical
line Lc = {s = c+ it : t ∈ R}. If∫ c+i∞

c

f(s)ds =
∫ ∞

0

if(c+ it)dt and
∫ c

c−i∞
f(s)ds =

∫ 0

−∞
if(c+ it)dt

converge, the integral of f(s) over Lc is defined by∫
Lc

f(s)ds := lim
T→∞

∫ c+iT

c−iT
f(s)ds = lim

T→∞

∫ T

−T
if(c+ it)dt

In what follows, the symbol
∫∞
−∞ will be used to mean limT→∞

∫ T
−T .

Integrals of the form previously defined are the ones which allow one to obtain information
about the coefficients of a Dirichlet Series.

3.2.2 Lema. If C is simple closed positively oriented path containing s = 0 in its interior, then∫
C

eas

s2
ds = a2πi.

Proof. Since the Laurent series for eas/s2 centered at s = 0 is

eas

s2
=

1
s2

∞∑
n=0

(as)n

n!
=

1
s2

+
a

s
+
∞∑
n=2

ansn−2

n!
,

the lema follows using theory of residues since the residue of eas/s2 at s = 0 is a. �

3.2.3 Lema. If c > 0 then

1
2πi

∫
Lc

xs

s2
ds =

{
log x si x ≥ 1
0 si 0 < x < 1

and if c > 1, then
1

2πi

∫
Lc

xs−1

(s− 1)2
ds =

{
log x si x ≥ 1
0 si 0 < x < 1.

Proof. The second statement follows from the first since by writing c = 1 + b (with b > 0), one
obtains

1
2πi

∫
Lc

xs−1

(s− 1)2
ds =

1
2πi

∫ ∞
−∞

ixb+it

(b+ it)2
dt =

1
2πi

∫
Lb

xs

s2
ds.

For the first statement, let CR be the circle of radius R > c with center s = 0. Let C1R , C2R be
the segments of CR which lie on the left and on the right of Lc respectively, and let LR be the
segment of Lc contained in the interior of CR. Then C1R ∪ LR and C2R ∪ LR are simple closed
paths and limR→∞ LR = Lc.

For x ≥ 1 consider the integral over C1R ∪ LR with positive orientation. By lema 3.2.2 with
a = log x,

1
2πi

∫
C1R∪LR

xs

s2
ds =

1
2πi

∫
C1R∪LR

es log x

s2
ds = log x. (3.4)

With the orientation of the path one also has limR→∞
∫
LR

=
∫
Lc

. Therefore, since by (3.4),
log x =

∫
C1R∪LR

=
∫
C1R

+
∫
LR

, to complete the proof one only has to show that limR→∞
∫
C1R

= 0.
With this in mind, one finds a bound for the integrand on C1R .

If s ∈ C1R then σ ≤ c, and since x ≥ 1,∣∣∣∣xss2
∣∣∣∣ =

xσ

|s2|
=
xσ

R2
≤ xc

R2
. (3.5)

And so, since the length of C1R is less than 2πR,∣∣∣∣∣ 1
2πi

∫
C1R

xs

s2
ds

∣∣∣∣∣ < 1
2π

xc

R2
2πR =

xc

R
.
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Therefore limR→∞
∫
C1R

= 0 as desired.
In the case 0 < x < 1 consider the integral over C2R ∪ LR with positive orientation. It follows

again that limR→∞
∫
LR

=
∫
Lc

. Since xs/s2 is analytic in C2R ∪ LR and its interior,

1
2πi

∫
C2R∪LR

xs

s2
ds = 0.

by Cauchy’s theorem. It is therefore again sufficient to prove
∫
C2R

→ 0. However, since for
s ∈ C2R one has σ ≥ c and in this case x < 1, the bound (3.5) continues to hold. Therefore,
limR→∞

∫
C2R

= 0 which in turn implies
∫
Lc

= 0. �

3.2.4 Lema. If c > 1

1
2πi

∫
Lc

xs

s(s− 1)
ds =

{
x− 1 if x ≥ 1
0 if 0 < x < 1

and
1

2πi

∫
Lc

xs−1

s(s− 1)
ds =

{
1− 1/x if x ≥ 1
0 if 0 < x < 1.

Proof. The proof is similar to the previous one. First of all note that the second statement follows
from the first since

1
2πi

∫
Lc

xs−1

s(s− 1)
ds =

1
2πi

∫ ∞
−∞

ixc+it−1

(c+ it)(c+ it− 1)
dt

=
1

2πi
1
x

∫ ∞
−∞

ixcxit

(c+ it)(c+ it− 1)
dt

=
1
x

1
2πi

∫
Lc

xs

s(s− 1)
ds.

For the first statement, fix c > 1 and define CR, C1R , C2R and LR as in the previous lema. For all
s ∈ CR one has |s(s− 1)| ≥ R(R− 1) by the inequality |s0 − s1| ≥ ||s0| − |s1||.

For x ≥ 1 consider C1R ∪ LR with positive orientation and note that the integrand can be
written as

xs

s(s− 1)
=

xs

s− 1
− xs

s
.

Since f(s) = xs is analytic in, and in the interior of C1R ∪LR, one obtains from Cauchy’s theorem
that

1
2πi

∫
C1R∪LR

f(s)
s
ds = f(0) = 1 and

1
2πi

∫
C1R∪LR

f(s)
s− 1

ds = f(1) = x.

Therefore,
1

2πi

∫
C1R∪LR

xs

s(s− 1)
ds = x− 1.

Now, since for s ∈ C1R x ≥ 1 and σ ≤ c,∣∣∣∣ xs

s(s− 1)

∣∣∣∣ =
xσ

|s(s− 1)|
≤ xc

R(R− 1)
. (3.6)

This implies, ∣∣∣∣∣ 1
2πi

∫
C1R

xs

s(s− 1)
ds

∣∣∣∣∣ ≤ 1
2π

xc

R(R− 1)
2πR =

xc

R− 1
.

And from this follows that

1
2πi

∫
Lc

xs

s(s− 1)
= lim
R→∞

1
2πi

∫
LR

xs

s(s− 1)
ds = x− 1.

in a manner similar to the proof of the previous lema.
In the case 0 < x < 1, the integrand is analytic in C2R ∪ LR which implies

∫
C2R∪LR

= 0 and

(3.6) is also valid for s ∈ C2R . This allows to conclude that limR→∞
∫
C2R

= 0, from which follows

that
∫
Lc

= 0. �
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3.2.5 Lema. Let g : R → C with continuous derivative in [1, x]. Let a : N → C and define
A(x) =

∑
n≤x a(n). Then,

∑
n≤x

a(n)[g(x)− g(n)] =
∫ x

1

A(t)g′(t)dt.

Proof. Using Abel’s identity B.1 with y = 1,∑
1<n≤x

a(n)g(n) = A(x)g(x)−A(1)g(1)−
∫ x

1

A(t)g′(t)dt.

However, since A(1) = a(1),∫ x

1

A(t)g′(t)dt = A(x)g(x)−
∑
n≤x

a(n)g(n) =
∑
n≤x

a(n)[g(x)− g(n)].

�

The following theorem establishes a relationship between the partial sums of the coefficients of
a Dirichlet Series with the behaviour of Dirichlet series over vertical lines.

3.2.6 Theorem. Let F (s) =
∑
f(n)/ns be an absolutely convergent Dirichlet Series for σ > 1

and let
Sf (x) =

∑
n≤x

f(n).

One has the following equality when c, x > 1

1
2πi

∫
Lc

xs−1

s(s− 1)
F (s)ds =

∫ x

1

Sf (y)
y2

dy.

Proof. Fix x > 1, c > 1 and define G(s) and H(s) by

G(s) = xs
∑
n≤x

f(n)
ns

=
∑
n≤x

f(n)
(x
n

)s
H(s) = xs

∑
n>x

f(n)
ns

=
∑
n>x

f(n)
(x
n

)s
.

Note that xsF (s) = G(s) + H(s). The integrals for G(s) and H(s) will be evaluated separately.
For the integral of G(s) one obtains from lema 3.2.4 that

1
2πi

∫
Lc

G(s)
s(s− 1)

ds =
∑
n≤x

(
f(n)

1
2πi

∫
Lc

(x/n)s

s(s− 1)
ds

)
=
∑
n≤x

[
f(n)

(x
n
− 1
)]

since x/n ≥ 1 for every term in the sum.
To calculate the integral of H(s) consider the circle of radius R > c with centre s = 0 and let

CR be the part of the circle on the right of Lc and let LR the segment of Lc contained inside the
circle. H(s) is analytic in LR ∪ CR and its interior since F (s) is analytic for σ > 1. Therefore,
orienting LR ∪ CR positively one obtains∫

CR∪LR

H(s)
s(s− 1)

ds = 0

and with this orientation one also has limR→∞
∫
LR

=
∫
Lc

. A proof that limR→∞
∫
CR

= 0 will be
given. This will imply that

∫
Lc

= 0.
Let A = xc

∑
n>x |f(n)| /nc. Since c > 1, A <∞ by the absolute convergence of F (s). If σ ≥ c,

|H(s)| =

∣∣∣∣∣∑
n>x

f(n)
(x
n

)s∣∣∣∣∣ ≤∑
n>x

|f(n)|
∣∣∣x
n

∣∣∣σ ≤∑
n>x

|f(n)|
∣∣∣x
n

∣∣∣c = A
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since in this case x/n < 1 for all terms of the series. Therefore, given that σ ≥ c for s ∈ CR one
obtains ∣∣∣∣∫

CR

H(s)
s(s− 1)

ds

∣∣∣∣ ≤ A

R(R− 1)
2πR =

2πA
R− 1

. (3.7)

This implies that the integral in (3.7) tends to 0 when R→∞ and since
∫
LR∪CR =

∫
LR

+
∫
CR

,∫
Lc

H(s)
s(s− 1)

ds = lim
R→∞

∫
LR

H(s)
s(s− 1)

ds = 0.

Combining the results for G(s) and H(s) one concludes that

1
2πi

∫
Lc

xs

s(s− 1)
F (s)ds =

∑
n≤x

[
f(n)

(x
n
− 1
)]

and by an argument similar to the one used in the lema 3.2.4, this equation can be written as

1
2πi

∫
Lc

xs−1

s(s− 1)
F (s)ds =

∑
n≤x

[
f(n)

(
1
n
− 1
x

)]
.

Note that the previous equality basically shows that the symbols of series and integral could be
interchanged. To arrive at the desired equality one uses lema 3.2.5 with g(y) = 1/y and a(n) = f(n)
to obtain ∑

n≤x

[
f(n)

(
1
n
− 1
x

)]
= −

∑
n≤x

f(n)[g(x)− g(n)] =
∫ x

1

Sf (y)
y2

dy.

�

3.2.7 Theorem (Riemann-Lebesgue Lema). Let φ : R→ C with continuous derivative and suppose
that

∫∞
−∞ |φ(t)| dt converges (in particular

∫ 0

−∞ |φ(t)| dt y
∫∞
0
|φ(t)| dt converge). Then, for λ ∈ R

lim
λ→∞

∫ ∞
−∞

eiλtφ(t)dt = 0.

Proof. Let ε > 0. Since
∫∞
−∞ |φ(t)| dt is convergent, there exists T > 0 such that

∫ −T
−∞ |φ(t)| dt < ε/3

and
∫∞
T
|φ(t)| dt < ε/3. Therefore, for every λ one has∣∣∣∣∫ ∞

T

eiλtφ(t)dt
∣∣∣∣ ≤ ∫ ∞

T

∣∣eiλtφ(t)
∣∣ dt =

∫ ∞
T

|φ(t)| dt < ε/3∣∣∣∣∣
∫ −T
−∞

eiλtφ(t)dt

∣∣∣∣∣ ≤
∫ −T
−∞
|φ(t)| dt < ε/3

Now, since φ′(t) is continuous in [−T, T ], the exists M such that |φ′(t)| ≤ M for t ∈ [−T, T ].
Taking

FT (λ) :=
∫ T

−T
eiλtφ(t)dt,

and integrating by parts, one obtains

FT (λ) =
1
iλ

(
eiλTφ(T )− e−iλTφ(−T )−

∫ T

−T
eiλtφ′(t)dt

)
.

And so,

|FT (λ)| ≤ 1
λ

(|φ(T )|+ |φ(−T )|+ 2TM) =
B

λ

with B independent of λ. Take λ0 such that |FT (λ)| < ε/3 for λ > λ0. For λ > λ0 one has∣∣∣∣∫ ∞
−∞

eiλtφ(t)dt
∣∣∣∣ < ε.

�
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3.3 A General Theorem

All the tools for the proof of the Main Theorem have now been developed. The proof of the Main
Theorem has been broken up into various steps to facilitate its reading. As will be seen, to prove
the PNT one will have to bound in a very strict manner ζ ′(σ+ it)/ζ(σ+ it) in terms of t. First of
all a lema.

3.3.1 Lema. Let A : [1,∞) → [0,∞) be a monotonic non decreasing function and suppose there
exists an α such that ∫ ∞

1

A(x)− αx
x2

dx

converges. Then, 1

A(x) ∼ αx.

Proof. The proof will be given for α = 1 and then the general case will be proved.
Suppose there exists λ > 1 such that A(x) ≥ λx for some x. Given that A(x) is increasing, one

has ∫ λx

x

A(t)− t
t2

dt ≥
∫ λx

x

λx− t
t2

dt =
∫ λ

1

λ− t
t2

dt > 0,

where the last equality is obtained with the substitution t = xu. Since the last integral is inde-
pendent of x, the existence of infinite xn with xn → ∞ for which A(xn) ≥ λxn contradicts the
convergence of the integral.

In a similar manner, the existence of λ < 1 with A(x) ≤ λx implies∫ x

λx

A(t)− t
t2

dt ≤
∫ x

λx

λx− t
t2

dt =
∫ 1

λ

λ− t
t2

dt < 0

which again contradicts the convergence of the integral with the existence of a sequence xn where
xn →∞ such that A(xn) ≤ λxn.

If α 6= 1, notice that ∫ ∞
1

A(x)− αx
x2

dx = α

∫ ∞
1

A(x)/α− x
x2

dx.

Therefore, if the integral converges one would have limx→∞A(x)/αx = 1, that is, A(x) ∼ αx. �

3.3.2 Theorem. Let F (s) be a complex function, analytic in an open region containing Re s ≥ 1
except possibly by a simple pole at s = 1 with residue α. If,

1. F admits a representation as a Dirichlet Series
∑
f(n)/ns with f non negative in some open

set containing Re s ≥ 1, and absolutely convergent for σ > 1.

2. There exists t0 ≥ 1 and a function P : [1,∞)→ [0,∞) such that

(a)
∫ ∞

1

P (t)
t2

dt converges.

(b) |F (σ ± it)| ≤ P (t) for σ ≥ 1, t ≥ t0

Then, ∑
n≤x

f(n) ∼ αx

Proof. By lema 3.3.1 it is enough to prove that∫ ∞
1

Sf (x)− αx
x2

dx

where Sf (x) =
∑
n≤x f(n), converges. The following steps are a proof of this.

STEP 1: Construction of φ.
1Remember that f(x) ∼ g(x) means limn→∞ f(x)/g(x) = 1.
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Let G(s) = F (s) − α/(s − 1) for s 6= 1. Defining G appropriately at s = 1 one makes G(s)
analytic in Re s ≥ 1. Let b be the residue of the simple pole of G(s)/(s− 1) at s = 1 and define

h(s) =
G(s)
s− 1

− b

s− 1

for s 6= 1. Define h(1) in such a way that h(s) is analytic in Re s ≥ 1. Let now B = b − α and
define φ(s) = h(s)/s. Therefore, φ(s) is analytic in Re s ≥ 1 and one also has

φ(s) =
F (s)

s(s− 1)
− α

(s− 1)2
− B

s(s− 1)
(3.8)

for s 6= 1 (this equality is not straight forward, but can be obtained after some algebra or partial
fractions for example).

STEP 2: Integral over Lc.
For x > 1 and c ≥ 1 define

I(x, c) =
1

2πi

∫
Lc

xs−1φ(s)ds.

Fix c > 1. Using the expression for xs−1φ(s) obtained from (3.8), that is,

xs−1φ(s) =
xs−1F (s)
s(s− 1)

− xs−1α

(s− 1)2
− xs−1B

s(s− 1)
,

and the convergence of the integrals over Lc of each one of the terms, one obtains by the results
in section 3.2 that for c > 1

I(x, c) =
∫ x

1

Sf (y)
y2

dy − α log x−B
(

1− 1
x

)
=
∫ x

1

Sf (y)− αy
y2

dy −B
(

1− 1
x

)
.

This shows that I(x, c) is independent of c and that to obtain the result it is sufficient to prove
that I(x, c) converges when x→∞. To prove this, the line of integration will be shifted to c = 1
and the the Riemann-Lebesgue lema will be used. Since the expression for I(x, c) has only been
shown for c > 1, it will be necessary to prove that I(x, c) = I(x, 1).

STEP 3: Bounds for φ(s).
From (3.8) it follows that

|φ(s)| ≤ |F (s)|+ |B|
|s(s− 1)|

+
|α|
|s− 1|2

.

Taking s = σ + it with σ ≥ 1 and |t| ≥ t0 one obtains |s(s− 1)| ≥ t2 and |s− 1|2 ≥ t2. therefore,
defining P1(t) = P (t) + |B|+ |α|, and using the hypothesis on P (t) one obtains

|φ(σ ± it)| ≤ P (t) + |B|+ |α|
t2

=
P1(t)
t2

.

Since
∫∞
1
P1(t)/t2dt converges for σ ≥ 1, then

∫∞
t0
|φ(σ + it)| dt and

∫ −t0
−∞ |φ(σ + it)| dt converge.

In particular, given that φ(1 + it) is continuous in [−t0, t0],∫ ∞
−∞
|φ(1 + it)| dt <∞.

STEP 4: I(x, c) = I(x, 1) for c > 1.
Let g(s) = xs−1φ(s). To prove that I(x, c) = I(x, 1) consider the rectangular path R with

vertices c± it and 1± it. Give R positive orientation and let Vc, V1 be the vertical segments of R
at σ = c and σ = 1 respectively. Similarly let H−t, Ht be the horizontal segments. Notice that
limt→∞

∫
Vc
g(s)ds = I(x, c) and limt→∞−

∫
V1
g(s)ds = I(x, 1).
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Since g(s) is analytic in R and its interior,∫
R

g(s)ds = 0.

Therefore,

−
∫
V1

g(s)ds =
∫
Vc

g(s)ds+
∫
H−t

g(s)ds+
∫
Ht

g(s)ds.

So, to prove the equality it is sufficient to prove that
∫
Ht
g(s)ds and

∫
H−t

g(s)ds tend to zero when
t→∞. The proof of this fact will be given for

∫
Ht

. The other case is similar.
Notice that∫

Ht

g(s)ds =
∫ 1+it

c+it

g(s)ds = −
∫ c

1

ig(σ + it)dσ = −
∫ c

1

ixσ+it−1φ(σ + it)dσ.

Therefore, for σ ≥ 1 and t ≥ t0 taking A =
∫ c
1
xσ−1dσ one has∣∣∣∣∫

Ht

g(s)ds
∣∣∣∣ ≤ ∫ c

1

xσ−1 |φ(σ + it)| dσ ≤ AP1(t)
t2

.

Since
∫∞
1
P1(t)/t2dt converges, limt→∞ P1(t)/t2 = 0 and the result follows. That is, I(x, c) =

I(x, 1).

STEP 5: Application of Riemann-Lebesgue.
Notice that

I(x, c) =
1

2πi

∫ ∞
−∞

ixc−1+itφ(c+ it)dt =
xc−1

2πi

∫ ∞
−∞

ieit log xφ(c+ it)dt.

Therefore,

I(x, 1) =
1

2π

∫ ∞
−∞

eit log xφ(1 + it)dt.

Since
∫∞
−∞ |φ(1 + it)| dt <∞, the Riemann-Lebesgue lema implies that limx→∞ I(x, c) = limx→∞ I(x, 1) =

0 and the theorem is proved. �

3.4 Proof of the PNT

The theorem from the previous section will be used to prove the PNT. For this, it will be sufficient
to prove ψ(x) ∼ x. This asymptotic identity is a direct consequence in the Main Theorem from
the previous section if it is proved that the hypothesis from 3.3.2 are satisfied and α = 1 for the
function −ζ ′(s)/ζ(s).

First of all a lema from complex analysis to prove that α = 1.

3.4.1 Lema. If f has a pole of order k at s = α then f ′(s)/f(s) has a simple pole (order 1) with
residue −k at s = α.

Proof. Write f(s) = g(s)/(s − α)k in some punctured disc around α with g analytic at α and
g(α) 6= 0. Differentiating,

f ′(s) =
g′(s)

(s− α)k
− kg(s)

(s− α)k+1
= f(s)

(
−k
s− α

+
g′(s)
g(s)

)
.

Therefore,
f ′(s)
f(s)

=
−k
s− α

+
g′(s)
g(s)

.

Since g(α) 6= 0, the function g′(s)/g(s) is analytic at α and the lema follows. �

3.4.2 Corollary. −ζ ′(s)/ζ(s) is analytic in Re s ≥ 1 except at s = 1 where it has a simple pole
with residue 1.
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Proof. Analyticity for Re s > 1 was proved in 2.1.7. Analyticity at Re s = 1 with s 6= 1 follows
from the fact that ζ(1 + it) 6= 0. The pole and its residue follow from the lama since ζ has a simple
pole at s = 1 with residue 1. �

The following result will be proved in the next section. Assuming it, the proof of the PNT is
immediate. The details are given in the next section so that the final step in the proof of the PNT
is not obscured, since the details of the proof of the next result are even more technical in nature
that what has already been done.

3.4.3 Theorem. There exists a constant K such that for σ ≥ 1 and t ≥ e5,∣∣∣∣ζ ′(σ ± it)ζ(σ ± it)

∣∣∣∣ ≤ K log9 t.

3.4.4 Theorem. ∫ ∞
1

log9 t

t2
dt converges.

Proof. With integration by parts with u = log9 t and dv = 1/t2. �

3.4.5 Theorem (The Prime Number Theorem).

lim
x→∞

π(x)
x/ log x

= 1.

Proof. Take the function F (s) = −ζ ′(s)/ζ(s) that satisfies the hypothesis of theorem 3.3.2 by 3.4.2,
3.4.4 and 2.1.7. Therefore,

ψ(x) ∼ x
that by 3.1.2 is equivalent to the PNT. �

3.5 Bounds on ζ(σ ± it)
The purpose of this section will be to prove that |ζ ′(σ ± it)/ζ(σ ± it)| ≤ K log9 t in a certain region.
This will fill in the missing details in the proof of the PNT. For obtaining this bound, the integral
representations of ζ(s) and ζ ′(s) from theorems 2.3.6 and 2.3.7 will be indispensable.

The following lema shows that all bounds on ζ(σ + it) will also be valid for ζ(σ− it) (and also
for ζ ′).

3.5.1 Lema. ζ(s) = ζ(s).

Proof.
n−s = e−s logn = e−σ logneit logn = e−σ logne−it logn = n−s.

�

3.5.2 Lema. If N ≥ 4, then
N∑
n=1

1
n
≤ 2 logN and

N∑
n=1

log n
n
≤ 2 log2N.

Proof. By theorem B.3 with f(x) = 1/x,

N∑
n=1

1
n
≤ 1 +

∫ N

1

1
x
dx = 1 + logN ≤ 2 logN.

For the other series use the theorem with f(x) = (log x)/x. However, in this case f(x) is decreasing
only if x > e. Therefore,

N∑
n=4

log n
n
≤
∫ N

3

log x
x

dx =
1
2

(log2N − log2 3).

This implies,
N∑
n=1

log n
n
≤ log2N + (log 2)/2 + (log 3)/3 ≤ 2 log2N.

�
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3.5.3 Theorem. If σ ≥ 1 y t ≥ e3 then |ζ(σ + it)| ≤ 3 log t.

As will be clear in the proof, this is not the best bound possible with the given arguments.
What is important for the main purpose is just to know that one can bound ζ(σ + it) in terms of
t from some value of t onwards.

Proof. Fix s = σ+ it with σ and t satisfying the hypothesis. Let N = [t] and consider the equality

ζ(s) =
N∑
n=1

1
ns

+
N1−s

s− 1
− s

∫ ∞
N

x− [x]
xs+1

dx. (3.9)

from theorem 2.3.6. Under the hypothesis on σ and t one obtains the following bounds for (3.9)
using lema 3.5.2 and the fact that N ≤ t:∣∣∣∣∣

N∑
n=1

1
ns

∣∣∣∣∣ ≤
N∑
n=1

1
nσ
≤

N∑
n=1

1
n
≤ 2 logN ≤ 2 log t∣∣∣∣N1−s

s− 1

∣∣∣∣ ≤ 1
|s− 1|

≤ 1
t∣∣∣∣s∫ ∞

N

x− [x]
xs+1

dx

∣∣∣∣ ≤ |s|∫ ∞
N

1
xσ+1

dx =
|s|
σNσ

≤ σ + t

σN
≤ 2.

Therefore,
|ζ(σ + it)| ≤ 2 log t+ 1/t+ 2 ≤ 3 log t.

�

3.5.4 Theorem. If σ ≥ 1 and t ≥ e5 then |ζ ′(σ + it)| ≤ 4 log2 t.

Proof. The proof is similar. Fix s = σ + it with σ and t satisfying the hypothesis, take N = [t]
and use the expression for ζ ′(σ + it) from theorem 2.3.7

ζ ′(s) =−
N∑
n=1

log n
ns

+ s

∫ ∞
N

(x− [x]) log x
xs+1

dx−
∫ ∞
N

x− [x]
xs+1

dx

− N1−s logN
s− 1

− N1−s

(s− 1)2

The following bound for each term are obtained:∣∣∣∣∣
N∑
n=1

log n
ns

∣∣∣∣∣ ≤ log t
N∑
n=1

1
n
≤ 2 log2 t∣∣∣∣N1−s logN

s− 1

∣∣∣∣ ≤ N1−σ logN
|s− 1|

≤ log t
t

< 2∣∣∣∣ N1−s

(s− 1)2

∣∣∣∣ ≤ 1
t2
≤ 1

2∣∣∣∣s∫ ∞
N

(x− [x]) log x
xs+1

dx

∣∣∣∣ ≤ |s|( logN
σNσ

+
1

σ2Nσ

)
≤ (logN + 1)

σ + t

σN

≤ 2 log t+ 2∣∣∣∣∫ ∞
N

x− [x]
xs+1

dx

∣∣∣∣ ≤ ∫ ∞
N

1
x2
dx =

1
N
≤ 1

2
.

Therefore,
|ζ ′(s)| ≤ 2 log2 t+ 5 + 2 log t ≤ 4 log2 t.

�

3.5.5 Theorem. For σ ≥ 1 y t ≥ e5 there exists a constant K such that

1
|ζ(σ + it)|

≤ K log7 t.
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It is known that ζ(1+it) comes arbitrarily close to zero, therefore, the bound cannot be replaced
by a constant. One should compare this with the result from theorem 2.4.3.

Proof. Suppose that σ ≤ 2. This will cause no harm to the proof since if σ > 2 then,∣∣∣∣ 1
ζ(s)

∣∣∣∣ =

∣∣∣∣∣
∞∑
n=1

µ(n)
ns

∣∣∣∣∣ ≤
∞∑
n=1

1
n2

= ζ(2)

(the value of ζ(2) is π2/6, as first shown by Euler), so K can be found such that the bound is also
valid in this case (once K is found for 1 ≤ σ ≤ 2 one takes the largest of the two).

Suppose then that 1 ≤ σ ≤ 2, t ≥ e5 and define g1(t) = 3 log t, g2(t) = 4 log2 t. Using the
expression for ζ from theorem 2.3.3 and ignoring the value of the integral one obtains that for
1 < σ ≤ 2

|ζ(σ)| ≤ 1 +
1

σ − 1
≤ 2
σ − 1

. (3.10)

From now on it will be assumed that σ 6= 1 so that the inequality (3.10) is satisfied. The result for
σ = 1 will follow by continuity. By (3.10), 2.4.2 and 3.5.3 one has,

1 ≤ ζ(σ)3 |ζ(σ + it)|4 |ζ(σ + i2t)| ≤ 23

(σ − 1)3
g1(2t) |ζ(σ + it)|4 .

Therefore, defining

f(σ, t) :=
(σ − 1)3/4

23/4[g1(2t)]1/4

it follows that for σ ∈ (1, 2] and t ≥ e5,

|ζ(σ + it)| ≥ f(σ, t).

Take α ∈ (1, 2). If 1 < σ ≤ α ≤ 2 notice that

|ζ(σ + it)− ζ(α+ it)| ≤
∫ α

σ

|ζ ′(x+ it)| dx ≤
∫ α

1

|ζ ′(x+ it)| dx ≤ g2(t)(α− 1).

Therefore, by the triangle inequality,

|ζ(σ + it)| ≥ |ζ(α+ it)| − |ζ(σ + it)− ζ(α+ it)|
≥ |ζ(α+ it)| − (α− 1)g2(t)
≥ f(α, t)− (α− 1)g2(t).

If α ≤ σ the previous inequality if also valid since |ζ(σ + it)| ≥ f(σ, t) ≥ f(α, t) , (σ − 1)3/4 ≥
(α− 1)3/4 and g2(t) > 0.

The previous arguments show that for σ ∈ (1, 2], t ≥ e5 and α ∈ (1, 2) it is true that,

|ζ(σ + it)| ≥ f(α, t)− (α− 1)g2(t). (3.11)

Make now α depend on t in such a way that f(α, t) − (α − 1)g2(t) = (α − 1)g2(t). This is
accomplished by taking

α− 1 =
1/27

g1(2t)[g2(t)]4
.

This implies that α > 1 and since g1(2t), g2(t) ≥ 1 then α < 2. Therefore, inequality (3.11) is
satisfied with this α and so,

|ζ(σ + it)| ≥ (α− 1)g2(t) =
C

g1(2t)[g2(t)]3
≥ D

log7 t

for some D as desired. �

By theorems 3.5.4, 3.5.5 and lema 3.5.1, there exists a constant K such that for σ ≥ 1 and
t ≥ e5, ∣∣∣∣ζ ′(σ ± it)ζ(σ ± it)

∣∣∣∣ ≤ K log9 t

as was to be proved.

31



3.6 Some comments about the PNT

The PNT was first conjectured (publicly) by Legendre int the year 1798 in a form different from
3.4.5 and somewhat incorrect. Gauss however, states in a letter to Encke in the year 1849 that he
had already conjectured the PNT in 1792 (a translation from this letter may be found at [Gol73]).
Gauss states in the letter that2

Li(x) :=
∫ x

2

1
log t

dt

was a good approximation of π(x). The following theorem shows that Gauss’s conjecture was
correct.

3.6.1 Theorem. Li(x) ∼ π(x)

Proof. Since limx→∞ Li(x) =∞,

lim
x→∞

Li(x)
x/ log x

= lim
x→∞

log x
log x− 1

= 1

by l’Hospital’s rule. It is easy to see that the relation f ∼ g is transitive, so the result follows from
the form of the PNT in 3.4.5. �

Given that the approximations obtained by the number theorem concern quotients of quantities,
it is natural to wonder what is the real error in approximating π(x) by x/ log x or by Li(x), after
all, one has x2 +xδ ∼ x2 for all δ < 2 and so the error can be considerable. It has been shown that
Li(x) is a better approximation of π(x) than x/ log x is. There is also an intriguing result which
relates the order of the error to the Riemann Hypothesis. More precisely, the following statement
is equivalent to Riemann’s Hypothesis: For every ε > 0 there exists a constant K such that

|Li(x)− π(x)| ≤ Kx1/2+ε.

Therefore, the size of the error of our approximation has a very close relation to Riemann’s Hypoth-
esis. The following equality, known Riemann’s explicit formula as also exhibits this relationship
:

ψ(x) = x−
∑
ρ

xρ

ρ
− ζ ′(0)
ζ(0)

− 1
2

log(1− 1/x2)

(here, of course, ζ has been continued to an open set which contains s = 0) where the series is
taken over all the zeros ρ of ζ with positive real part and ψ(x) is Chebyshev’s function as defined
in 3.1.1.

The following are a few consequences that can be deduced quite easily from the PNT.

3.6.2 Theorem. If pn is the n-th prime, then pn ∼ n log n.

Proof. Since π(pn) = n, the PNT implies that

lim
n→∞

n log pn
pn

= 1. (3.12)

In this manner,
lim
n→∞

(log n+ log log pn − log pn) = 0

which dividing by log pn becomes

lim
n→∞

log n+ log log pn
log pn

= 1.

However, using l’Hospital’s rule for an appropriate differentiable function P with P (n) = pn one
obtains limn→∞ log log pn/ log pn = 0, so

lim
n→∞

log n
log pn

= 1. (3.13)

The theorem follows by multiplying (3.12) and (3.13). �

2Some authors define Li(x) as

Li(x) = lim
ε→0+

{∫ 1−ε

0
+

∫ x

1+ε

}
1

log t
dt.

It can be shown that the different definitions differ in no more than 1.1 and so are equivalent in this context.
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3.6.3 Corollary.
lim
n→∞

pn+1

pn
= 1.

3.6.4 Corollary. The set S := {p/q : p and q are primes} is dense R+.

Proof. It is enough to prove that S is dense in Q+ = Q ∩ (0,∞). Let a/b ∈ Q+. Then, taking
again pn as the n-th prime, it follows by 3.6.2 that

lim
n→∞

pan
pbn

= lim
n→∞

a log(an)
b log(bn)

=
a

b
.

�
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Appendix A

Complex Integration

A.1 Theorem. Let V ⊆ C be an open set and fn : V → C a sequence of analytic functions on V
which converge point-wise to f : V → C. If fn → f uniformly on every compact subset of V , then
f is analytic and f ′n → f ′ in V .

Proof. By Morera’s theorem (see [Bro92], pg. 141), if U is open and∫
C

f(z)dz = 0

for every simple closed path contained in U , then f is analytic in U . Take z0 ∈ V and let B(z0) ⊂ V
be an open ball around z0 with B(z0) ⊆ V . By hypothesis, fn → f uniformly in B(z0), so if ε > 0
there exists N such that |f(z)− fn(z)| < ε for every n ≥ N and z ∈ B(z0). Therefore, for every
simple close path C contained in B(z0) and every n ≥ N ,∣∣∣∣∫

C

f(z)dz −
∫
C

fn(z)dz
∣∣∣∣ =

∣∣∣∣∫
C

f(z)− fn(z)dz
∣∣∣∣ ≤ εL

where L is the length of C. This implies that∫
C

f(z)dz = lim
n→∞

∫
C

fn(z)dz = 0

since
∫
C
fn(z)dz = 0 by Cauchy’s theorem ([Bro92], pgs. 136-140) and so f is analytic in B(z0),

and so in V .
By Cauchy’s integral formula,

f ′(z0) =
1

2πi

∫
∂B(z0)

f(z)
(z − z0)2

dz and f ′n(z0) =
1

2πi

∫
∂B(z0)

fn(z)
(z − z0)2

dz

where ∂B(z0) is the boundary of B(z0) with positive orientation. Therefore,

|f ′(z0)− f ′n(z0)| ≤
∣∣∣∣ 1
2πi

∫
C

f(z)− fn(z)
(z − z0)2

dz

∣∣∣∣ ≤ ε

R

for every n ≥ N where R is the radius of ∂B(z0) since∣∣∣∣f(z)− fn(z)
(z − z0)2

∣∣∣∣ ≤ ε

R2
.

From this it follows that f ′n(z0)→ f ′(z0). �
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Appendix B

Relationships between Integrals
and Series

For analytic number theory, it is essential to know that relationships between series and integrals.
The following theorem will be of great use.

B.1 Theorem (Abel’s Identity). Consider a : N → C and define A(x) =
∑
n≤x a(n) if x ≥ 1, 0

otherwise. Let 0 < y < x and f : R→ C be a function with continuous derivative in [y, x]. Abel’s
Identity states that: ∑

y<n≤x

a(n)f(n) = A(x)f(x)−A(y)f(y)−
∫ x

y

A(t)f ′(t)dt.

Notice the similarity with the formula for integration by parts.

Proof. Write [x] for the greatest integer less than or equal to x. Now,

∑
y<n≤x

a(n)f(n) =
[x]∑

n=[y]+1

a(n)f(n)

=
[x]∑

n=[y]+1

(A(n)−A(n− 1))f(n)

=
[x]∑

n=[y]+1

A(n)f(n)−
[x]∑

n=[y]+1

A(n− 1)f(n)

=
[x]∑

n=[y]+1

A(n)f(n)−
[x]−1∑
n=[y]

A(n)f(n+ 1)

= A([x])f([x])−A([y])f([y + 1])−
[x]−1∑

n=[y]+1

A(n)(f(n+ 1)− f(n))

= A([x])f([x])−A([y])f([y + 1])−
[x]−1∑

n=[y]+1

∫ n+1

n

A(n)f ′(t)dt

= A([x])f([x])−A([y])f([y + 1])−
∫ [x]

[y]+1

A(t)f ′(t)dt.

Substituting A([x])f([x]) and A([y])f([y] + 1) in the last line by the expressions which follow from
(1) and (2), (shown below) one obtains the desired equality. Note that A([x]) = A(x).∫ x

[x]

A(t)f ′(t)dt = A([x])
∫ x

[x]

f ′(t)dt = A(x)f(x)−A([x])f([x]) (1)

∫ [y]+1

y

A(t)f ′(t)dt = A([y])
∫ [y]+1

y

f ′(t)dt = A([y])f([y] + 1)−A(y)f(y) (2)
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B.2 Theorem (Euler’s Summation Formula). Let f : R→ C have continuous derivative in [y, x],
0 < y < x. Then,∑

y<n≤x

f(n) =
∫ x

y

f(t)dt+
∫ x

y

(t− [t])f ′(t)dt+ f(x)([x]− x)− f(y)([y]− y).

Proof. Applying Abel’s identity B.1 with a(n) = 1 which implies A(x) = [x], one obtains∑
y<n≤x

f(n) = f(x)[x]− f(y)[y]−
∫ x

y

[t]f ′(t)dt (3)

however, integrating by parts,∫ x

y

f(t)dt = xf(x)− yf(y)−
∫ x

y

tf ′(t)dt (4)

Subtracting (4) from (3) and rearranging terms one obtains the desired equality. �

B.3 Theorem. Let n1 < n2 be integers. If f : [n1, n2]→ [0,∞) is continuous and monotonically
decreasing then

n2∑
n=n1+1

f(n) ≤
∫ n2

n1

f(t)dt ≤
n2−1∑
n=n1

f(n).

Proof. Take an integer r with n1 < r ≤ n2 and let t ∈ R be such that r − 1 ≤ t ≤ r. Since f is
decreasing, f(r − 1) ≥ f(t) ≥ f(r). Therefore, integrating from r − 1 to r with respect to t one
obtains

f(r) ≤
∫ r

r−1

f(t)dt ≤ f(r − 1).

The inequality is obtained by summing for r = n1 + 1, n1 + 2, . . . , n2. �

B.4 Corollary. Let f : [1,∞) → [0,∞) be a continuous decreasing function. Then
∑∞
n=1 f(n)

converges if and only if
∫∞
1
f(t)dt converges.
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Appendix C

Infinite Products

The contents of this appendix are taken from [Jam03] pgs. 228-229.

C.1 Definition. Let {an}n∈N be a complex sequence. The infinite product

∞∏
n=1

(1 + an) (1)

is said to converge to P if the sequence {pn}n∈N defined by

pn =
n∏
i=1

(1 + ai) (2)

converges to P. In such a case, the value of the infinite product is said to be P.

The symbol
∏

(1 + an) will be used to refer to (1) whenever no ambiguities can arise.

C.2 Theorem. If
∏

(1 + an) and
∏

(1 + bn) converge, then

∞∏
n=1

[(1 + an)(1 + bn)] =
∞∏
n=1

(1 + an)
∞∏
n=1

(1 + bn).

Moreover, if
∏

(1 + an) 6= 0 then,

∞∏
n=1

1
(1 + an)

=
1∏∞

n=1(1 + an)

Proof. Direct consequence of the definition. Note that if
∏

(1 + an) 6= 0 then an 6= 1 for all n. �

C.3 Theorem. If
∑
an converges absolutely, then

∏
(1 + an) converges.

Proof. For every x ≥ 0 one has
1 + x ≤ ex

by the Taylor series of ex. Therefore, for every i ∈ N

|1 + ai| ≤ 1 + |ai| ≤ e|ai|. (3)

Define pn as in (2) and let S =
∑
|an|. By (3)

|pn| ≤ e
∑n
i=1|ai| ≤ eS .

So |anpn| ≤ es |an| and
∞∑
n=2

|anpn−1| ≤ Ses.

In particular,
∑∞
n=2 anpn−1 converges. However, anpn−1 = pn − pn−1 so

∑∞
n=2(pn − pn−1) con-

verges. Since
∑∞
n=2(pn− pn−1) = limn→∞(pn− p1) it follows that limn→∞ pn exists and therefore∏

(1 + an) converges. �
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C.4 Theorem. If
∑
an converges absolutely and an 6= −1 for every n, then

∏
(1 + an) 6= 0.

Proof. Let P =
∏

(1+an). The convergence of the infinite product
∏(

1
1+an

)
will be proved. This

will imply the theorem by C.2.
Take

bn =
an

1 + an
.

Since limn→∞ an = 0 by the absolute convergence of
∑
an, there exists N ∈ N such that |1 + an| ≥

1/2 for n ≥ N . Therefore, |bn| ≤ 2 |an| for n ≥ N which implies that
∑
bn converges absolutely.

By the previous theorem it follows that
∏

(1− bn) converges. However,

1− bn =
1

1 + an

and so,
∞∏
n=1

1
1 + an

converges and the theorem is proved. �
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Appendix D

Functions defined by Dirichlet
Integrals

The content of this appendix is taken from [Jam03] pgs. 230-231.

D.1 Lema. If |s| ≤ 1/2, then |es − 1− s| ≤ |s|2

Proof. From the Taylor series of es with centre at s = 0 one has:

|es − 1− s| ≤
∞∑
n=2

|sn|
n!
≤ |s|

2

2

∞∑
n=0

|s|n =
|s|2

2(1− |s|)
≤ |s|2 .

�

D.2 Theorem. Let 0 < a < b < ∞, f : [a, b] → C bounded and Riemann Integrable in [a, b] and
define I : C→ C by

I(s) =
∫ b

a

f(x)
xs

dx.

Then, I(s) is analytic in all of C and

I ′(s) = −
∫ b

a

f(s) log x
xs

dx

Note that the integrand in I ′(s) is simply the derivative of the integran in I(s). The theorem
states that one can interchange the symbols of differentiation and integration for these functions.

Proof. Take s0 ∈ C and define I ′(s) as before (It of course still has no relation with the derivative
of I(s)). What has to be proved is that

lim
s→s0

I(s)− I(s0)
s− s0

= I ′(s0).

By the definitions of I(s) and I ′(s) one has that

I(s)− I(s0)− (s− s0)I ′(s0) =
∫ b

a

(
f(x)
xs
− f(x)

xs0
+ (s− s0)

f(x) log x
xs0

)
dx.

Denote by g(s, s0) the integrand of the previous equation. Then

|g(s, s0)| = |f(x)|
|xs0 |

∣∣∣∣ 1
xs−s0

− 1 + (s− s0) log x
∣∣∣∣ .

Let M be such that |f(x)| ≤M and K such that |log x| ≤ K in [a, b]. By lema D.1, for s ∈ C with
K |s− s0| ≤ 1/2, ∣∣∣∣ 1

xs−s0
− 1 + (s− s0) log x

∣∣∣∣ =
∣∣∣e(s0−s) log x − 1− (s0 − s) log x

∣∣∣
≤ |s− s0|2 log2 x.
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Therefore,

|g(s, s0)| ≤ M

xσ0
|s− s0|2 log2 x.

And so, defining A = M

∫ b

a

log2 x

xσ0
dx one has,

|I(s)− I(s0)− (s− s0)I ′(s0)| ≤ A |s− s0|2 .

That is, ∣∣∣∣I(s)− I(s0)
s− s0

− I ′(s0)
∣∣∣∣ ≤ A |s− s0| .

Taking s→ s0 the result follows since A is independent from s. �

D.3 Theorem. Let N ∈ N, N 6= 0 and f : [N,∞) → C be a continuous function except possibly
at N ∩ [N,∞) where, however, left and right limits exist. Suppose also that there exist M,α ∈ R
such that |f(x)| ≤Mxα. Then, ∫ ∞

N

f(x)
xs+1

dx

converges for s ∈ C with σ > α and defining I(s) and the value of the integral, then I(s) is analytic
in Re s > α and its derivative is given by

I ′(s) = −
∫ ∞
N

f(x) log x
xs+1

dx.

Proof. The proof is similar to the one given to prove that Dirichlet Series are analytic in their half
plane of convergence.

Note that ∣∣∣∣∫ ∞
N

f(x)
xs+1

dx

∣∣∣∣ ≤ ∫ ∞
N

|f(x)|
xσ+1

dx ≤
∫ ∞
N

Mxα

xσ+1
dx = M

∫ ∞
N

1
x1+(σ−α)

dx.

Therefore, for s ∈ C with σ > α the integral converges since 1 + (σ − α) > 1.
To prove that I(s) is analytic, consider the sequence of functions {In(s)}n∈N defined by

In(s) =
∫ N+n

N

f(x)
xs+1

dx.

By theorem D.2, each In(s) is analytic in the whole of C, moreover,

I ′n(s) = −
∫ N+n

N

f(x) log x
xs+1

dx.

It will be shown that the sequence {In(s)}n∈N converges uniformly on every compact subset of
Re s > α from which will follow that I(s) is analytic in this region and that I ′n(s) → I ′(s) when
n→∞.

Take a compact subset K in Re s > α and let a ∈ R be such that for every s = σ+ it ∈ K one
has α < a < σ. If s ∈ K, then

|I(s)− In(s)| =
∣∣∣∣∫ ∞
N+n

f(x)
xs+1

dx

∣∣∣∣ ≤ ∫ ∞
N+n

Mxα

xσ+1
dx

=
M

(σ − α)(N + n)σ−α
≤ M

(a− α)(N + n)a−α

where the last inequality comes from the fact that σ − α > a − α. Since the last term tends to
zero when n→∞ independently of s, uniform convergence on K is proved. �
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