Lines on cubic surfaces, elliptic surfaces and the E_6 lattice

T. Shioda, Weierstrass Transformations and Cubic Surfaces

Enrique Acosta

Department of Mathematics University of Arizona

May 2009

Cubic Surfaces

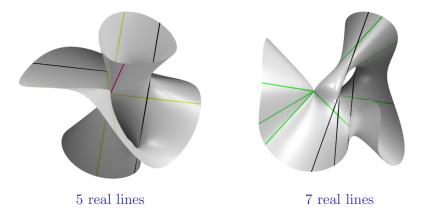
Theorem

Any smooth cubic surface in \mathbb{P}^3 contains exactly 27 lines.

Cubic Surfaces

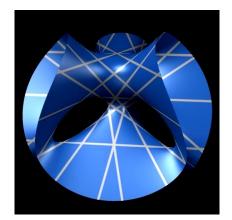
Theorem

Any smooth cubic surface in \mathbb{P}^3 contains exactly 27 lines. However...the lines are usually not defined over the reals.



NOTE: These are not smooth...but you get the point.

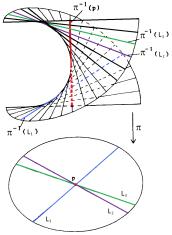
Cubic Surfaces



The Clebsch Diagonal Cubic $x^3+y^3+z^3+w^3-(x+y+z+w)^3=0$

Blowing up

- ► Given any smooth algebraic surface, replace a point by a line (the Exceptional Line): a copy of P¹.
- Each point on this line corresponds a tangent direction at the point.



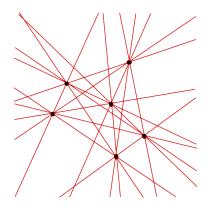
- ► Every smooth cubic in P³ is isomorphic to P² blown up at six points (not all on a conic and no three on a line).
- The 27 lines are given by:

- ► Every smooth cubic in P³ is isomorphic to P² blown up at six points (not all on a conic and no three on a line).
- The 27 lines are given by:

6: The six exceptional lines.

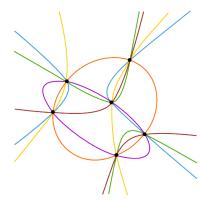
- ► Every smooth cubic in P³ is isomorphic to P² blown up at six points (not all on a conic and no three on a line).
- The 27 lines are given by:

- 6: The six exceptional lines.
- 15: The strict transform of the lines conecting any two of the six points.



- ► Every smooth cubic in P³ is isomorphic to P² blown up at six points (not all on a conic and no three on a line).
- The 27 lines are given by:

- 6: The six exceptional lines.
- 15: The strict transform of the lines conecting any two of the six points.
 - 6: The strict transform of the 6 (unique) conics through five of the six points.



Two natural questions

Question 1

Given a cubic smooth surface, ¿Can you find the equations of the 27 lines?

Two natural questions

Question 1

Given a cubic smooth surface, ¿Can you find the equations of the 27 lines?

Question 2

Given six points in \mathbb{P}^2 , ¿Can find the equation of the corresponding smooth cubic surface and the 27 lines in it?

Question 1: ¿Can you find the equations of the 27 lines?

Very difficult!...the lines are usually not defined over the field of definition of the surface.

Question 1: ¿Can you find the equations of the 27 lines?

Very difficult!...the lines are usually not defined over the field of definition of the surface.

Example (Shioda)

The minumum field extension of ${\mathbb Q}$ where all the 27 lines of the cubic surface

$$y^2 + 2yz = x^3 + x + xz^2 + z + z^2 + 1$$

are defined is the splitting field of a polynomial of degree 27. The degree of this extension is 51,840.

Question 1: ¿Can you find the equations of the 27 lines?

Very difficult!...the lines are usually not defined over the field of definition of the surface.

Example (Shioda)

The minumum field extension of ${\mathbb Q}$ where all the 27 lines of the cubic surface

$$y^2 + 2yz = x^3 + x + xz^2 + z + z^2 + 1$$

are defined is the splitting field of a polynomial of degree 27. The degree of this extension is 51,840.

More Generally (Harris)

There are no explicit equations for the 27 lines of a general cubic surface.

Question 2:

Given the six points you blow up, ¿Can you find the equation of the resulting smooth cubic surface and the 27 lines in it?

 The space of plane cubics is 9-dimensional (10 projective coefficients).

- The space of plane cubics is 9-dimensional (10 projective coefficients).
- ► Assuming the six points are not on a conic and no three are on a line, the space of cubics through the six points is 3-dimensional (9 - 6 = 3), i.e., the conditions are independent.

- The space of plane cubics is 9-dimensional (10 projective coefficients).
- ► Assuming the six points are not on a conic and no three are on a line, the space of cubics through the six points is 3-dimensional (9 - 6 = 3), i.e., the conditions are independent.
- Let f_0, f_1, f_2, f_3 be a basis.

- The space of plane cubics is 9-dimensional (10 projective coefficients).
- ► Assuming the six points are not on a conic and no three are on a line, the space of cubics through the six points is 3-dimensional (9 - 6 = 3), i.e., the conditions are independent.
- Let f_0, f_1, f_2, f_3 be a basis. The equation of any plane cubic through the six points is a linear combination of the f_i .

- The space of plane cubics is 9-dimensional (10 projective coefficients).
- ► Assuming the six points are not on a conic and no three are on a line, the space of cubics through the six points is 3-dimensional (9 - 6 = 3), i.e., the conditions are independent.
- ▶ Let *f*₀, *f*₁, *f*₂, *f*₃ be a basis. The equation of any plane cubic through the six points is a linear combination of the *f*_i.

• Define the rational map $\mathbb{P}^2 \to \mathbb{P}^3$

$$[x:y:z] \mapsto [f_0(x,y,z):\ldots:f_3(x,y,z)]$$

- The space of plane cubics is 9-dimensional (10 projective coefficients).
- ► Assuming the six points are not on a conic and no three are on a line, the space of cubics through the six points is 3-dimensional (9 - 6 = 3), i.e., the conditions are independent.
- ▶ Let *f*₀, *f*₁, *f*₂, *f*₃ be a basis. The equation of any plane cubic through the six points is a linear combination of the *f*_i.

$$\blacktriangleright$$
 Define the rational map $\mathbb{P}^2 \to \mathbb{P}^3$

$$[x:y:z] \mapsto [f_0(x,y,z):\ldots:f_3(x,y,z)]$$

► The map is not defined at the six points since all the f_i give zero, but it extends to a map from the blowup of P² at those points to P³ which is in fact an ISOMORPHISM.

► The image is a cubic surface by arguments involving how many times a general line in P³ intersects the surface.

- ► The image is a cubic surface by arguments involving how many times a general line in P³ intersects the surface.
- The equation for the surface is never given, and there is no apparent way to find it in general.

- ► The image is a cubic surface by arguments involving how many times a general line in P³ intersects the surface.
- The equation for the surface is never given, and there is no apparent way to find it in general.

The Article

- T. Shioda, Weierstrass Transformations and Cubic Surfaces, 1994.
 - Explicit equation for the cubic in terms of the equations of the blown-up points.
 - The construction involves the E_6 lattice and its dual E_6^*

• Let P_1, \ldots, P_6 be six points in \mathbb{P}^2 not on a conic and no three on a line.

- Let P₁,..., P₆ be six points in ℙ² not on a conic and no three on a line.
- ► By a linear change of coordinates we can assume that they all lie on the cuspidal cubic y² = x³.

- Let P₁,..., P₆ be six points in ℙ² not on a conic and no three on a line.
- ► By a linear change of coordinates we can assume that they all lie on the cuspidal cubic y² = x³.
- ► The cuspidal cubic has a parametrization (1/u², 1/u³), so each P_i corresponds to a u_i.

- Let P₁,..., P₆ be six points in ℙ² not on a conic and no three on a line.
- ► By a linear change of coordinates we can assume that they all lie on the cuspidal cubic y² = x³.
- ► The cuspidal cubic has a parametrization (1/u², 1/u³), so each P_i corresponds to a u_i.
- The condition on their configuration is equivalent to:

•
$$u_i \neq u_j$$
 if $i \neq j$.

- $\sum u_i \neq 0$
- $u_i + u_j + u_k \neq 0$ for i, j, k distinct.

- Let P₁,..., P₆ be six points in ℙ² not on a conic and no three on a line.
- ► By a linear change of coordinates we can assume that they all lie on the cuspidal cubic y² = x³.
- ► The cuspidal cubic has a parametrization (1/u², 1/u³), so each P_i corresponds to a u_i.
- The condition on their configuration is equivalent to:

•
$$u_i \neq u_j$$
 if $i \neq j$.

- $\sum u_i \neq 0$
- $u_i + u_j + u_k \neq 0$ for i, j, k distinct.
- Let c_n be the *n*-th symmetric function in the u_i : $\prod(x - u_i) = x^6 - c_1 x^5 + c_2 x^4 + \ldots + c_6$

Let ε_n is the *n*-th symmetric function in the 27 forms:

$$a_i = \frac{c_1}{3} - u_i$$
 $a'_i = \frac{-2c_1}{3} - u_i$ $a''_{ij} = \frac{c_1}{3} - u_i - u_j$

Let ε_n is the *n*-th symmetric function in the 27 forms:

$$a_i = \frac{c_1}{3} - u_i$$
 $a'_i = \frac{-2c_1}{3} - u_i$ $a''_{ij} = \frac{c_1}{3} - u_i - u_j$

The equation of the cubic surface obtained by blowing up P_1,\ldots,P_6 is

$$y^{2} + 2y = x^{3} + x(p_{0} + p_{1}z + p_{2}z^{2}) + (q_{0} + q_{1}z + q_{2}z^{2})$$

Let ε_n is the *n*-th symmetric function in the 27 forms:

$$a_i = \frac{c_1}{3} - u_i$$
 $a'_i = \frac{-2c_1}{3} - u_i$ $a''_{ij} = \frac{c_1}{3} - u_i - u_j$

The equation of the cubic surface obtained by blowing up P_1,\ldots,P_6 is

$$y^{2} + 2y = x^{3} + x(p_{0} + p_{1}z + p_{2}z^{2}) + (q_{0} + q_{1}z + q_{2}z^{2})$$

$$p_2 = \varepsilon_2/12$$

Let ε_n is the *n*-th symmetric function in the 27 forms:

$$a_i = \frac{c_1}{3} - u_i$$
 $a'_i = \frac{-2c_1}{3} - u_i$ $a''_{ij} = \frac{c_1}{3} - u_i - u_j$

The equation of the cubic surface obtained by blowing up P_1,\ldots,P_6 is

$$y^{2} + 2y = x^{3} + x(p_{0} + p_{1}z + p_{2}z^{2}) + (q_{0} + q_{1}z + q_{2}z^{2})$$

$$p_2 = \varepsilon_2/12$$
$$p_1 = \varepsilon_5/48$$

Let ε_n is the *n*-th symmetric function in the 27 forms:

$$a_i = \frac{c_1}{3} - u_i$$
 $a'_i = \frac{-2c_1}{3} - u_i$ $a''_{ij} = \frac{c_1}{3} - u_i - u_j$

The equation of the cubic surface obtained by blowing up P_1,\ldots,P_6 is

$$y^{2} + 2y = x^{3} + x(p_{0} + p_{1}z + p_{2}z^{2}) + (q_{0} + q_{1}z + q_{2}z^{2})$$

$$p_2 = \varepsilon_2/12$$
$$p_1 = \varepsilon_5/48$$

$$q_2 = (\varepsilon_6 - 168 p_2^3)/96$$

Let ε_n is the *n*-th symmetric function in the 27 forms:

$$a_i = \frac{c_1}{3} - u_i$$
 $a'_i = \frac{-2c_1}{3} - u_i$ $a''_{ij} = \frac{c_1}{3} - u_i - u_j$

The equation of the cubic surface obtained by blowing up P_1,\ldots,P_6 is

$$y^{2} + 2y = x^{3} + x(p_{0} + p_{1}z + p_{2}z^{2}) + (q_{0} + q_{1}z + q_{2}z^{2})$$

$$p_2 = \varepsilon_2/12$$

$$p_1 = \varepsilon_5/48$$

$$q_2 = (\varepsilon_6 - 168p_2^3)/96$$

$$p_0 = (\varepsilon_8 - 294p_1p_2^2)/1344$$

The answer

Let ε_n is the *n*-th symmetric function in the 27 forms:

$$a_i = \frac{c_1}{3} - u_i$$
 $a'_i = \frac{-2c_1}{3} - u_i$ $a''_{ij} = \frac{c_1}{3} - u_i - u_j$

The equation of the cubic surface obtained by blowing up P_1,\ldots,P_6 is

$$y^{2} + 2y = x^{3} + x(p_{0} + p_{1}z + p_{2}z^{2}) + (q_{0} + q_{1}z + q_{2}z^{2})$$

where

$$p_{2} = \varepsilon_{2}/12$$

$$p_{1} = \varepsilon_{5}/48$$

$$q_{2} = (\varepsilon_{6} - 168p_{2}^{3})/96$$

$$p_{0} = (\varepsilon_{8} - 294p_{1}p_{2}^{2})/1344$$

$$q_{0} = (\varepsilon_{12} - 608p_{1}^{2}p_{2} - \ldots + 1248q_{2}^{2})/17280$$

The answer

 L_i : a $L'_i: a$

The equations for the 27 lines are also explicit:

$$x = az + b \qquad \bigcap \qquad y = dz + e$$

$$L_i: \ a = a_i.$$

$$L'_i: \ a = a'_i.$$

$$L'_{ij}: \ a = a'_{ij}.$$

b =complicated expression in c_1, c_2, c_3, c_4, u_i

In all cases:

$$d = (a^3 + ap_2)/2$$
$$e = (3a^2b - d^2 + ap_1 + bp_2 + q_2)/2$$

Theorem

The Mordell-Weil lattice of the elliptic curve

$$E: y^{2} = x^{3} + x(p_{0} + p_{1}t + p_{2}t^{2}) + (q_{0} + q_{1}t + q_{2}t^{2} + t^{4})$$

defined over $\mathbb{Q}(t)$ is isomorphic to E_6^* .

Theorem

The Mordell-Weil lattice of the elliptic curve

$$E: y^{2} = x^{3} + x(p_{0} + p_{1}t + p_{2}t^{2}) + (q_{0} + q_{1}t + q_{2}t^{2} + t^{4})$$

defined over $\mathbb{Q}(t)$ is isomorphic to E_6^* . Moreover,

▶ The 54 minimal roots are given by 27 points P = (x, y) of the form

$$x = at + b \qquad y = t^2 + dt + e$$

and the 27 negatives of the points above -P = (x, -y).

Theorem

The Mordell-Weil lattice of the elliptic curve

$$E: y^{2} = x^{3} + x(p_{0} + p_{1}t + p_{2}t^{2}) + (q_{0} + q_{1}t + q_{2}t^{2} + t^{4})$$

defined over $\mathbb{Q}(t)$ is isomorphic to E_6^* . Moreover,

▶ The 54 minimal roots are given by 27 points P = (x, y) of the form

$$x = at + b \qquad y = t^2 + dt + e$$

and the 27 negatives of the points above -P = (x, -y).

► The coefficients a, b, c, d can be given explicitly in terms of the p_i, q_j.

Theorem

The Mordell-Weil lattice of the elliptic curve

$$E: y^{2} = x^{3} + x(p_{0} + p_{1}t + p_{2}t^{2}) + (q_{0} + q_{1}t + q_{2}t^{2} + t^{4})$$

defined over $\mathbb{Q}(t)$ is isomorphic to E_6^* . Moreover,

▶ The 54 minimal roots are given by 27 points P = (x, y) of the form

$$x = at + b \qquad y = t^2 + dt + e$$

and the 27 negatives of the points above -P = (x, -y).

- ► The coefficients a, b, c, d can be given explicitly in terms of the p_i, q_j.
- These roots generate the Mordell-Weil group, and one can give six explicit points which generate the Mordell-Weil group.

$$E: y^{2} = x^{3} + x(p_{0} + p_{1}t + p_{2}t^{2}) + (q_{0} + q_{1}t + q_{2}t^{2} + t^{4})$$

► The parameter t in the equation for E can be viewed as a coordinate and E itself as an affine surface.

$$E: y^{2} = x^{3} + x(p_{0} + p_{1}t + p_{2}t^{2}) + (q_{0} + q_{1}t + q_{2}t^{2} + t^{4})$$

- ► The parameter t in the equation for E can be viewed as a coordinate and E itself as an affine surface.
- The map y → y t² maps this surface to a cubic surface and the root vectors of the form P = (at + b, t² + dt + e) to lines (at + b, dt + e).

$$E: y^{2} = x^{3} + x(p_{0} + p_{1}t + p_{2}t^{2}) + (q_{0} + q_{1}t + q_{2}t^{2} + t^{4})$$

- ► The parameter t in the equation for E can be viewed as a coordinate and E itself as an affine surface.
- The map y → y t² maps this surface to a cubic surface and the root vectors of the form P = (at + b, t² + dt + e) to lines (at + b, dt + e).
- ▶ So we have a cubic surface and the 27 lines on it.

$$E: y^{2} = x^{3} + x(p_{0} + p_{1}t + p_{2}t^{2}) + (q_{0} + q_{1}t + q_{2}t^{2} + t^{4})$$

- ► The parameter t in the equation for E can be viewed as a coordinate and E itself as an affine surface.
- The map y → y t² maps this surface to a cubic surface and the root vectors of the form P = (at + b, t² + dt + e) to lines (at + b, dt + e).
- ► So we have a cubic surface and the 27 lines on it.
- Now relate this somehow to the blowup of six points in the plane....

The 28 bitangents

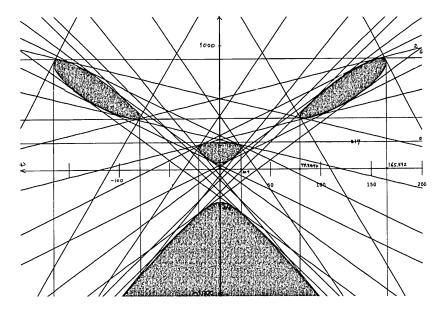


Image Credits

The grey cubics:

By Oliver Labs, from his webapge *The Cubic Surface Homepage* at http://www.cubics.algebraicsurface.net/

The Clebsh Cubic (blue):

By Stephan Endrass, made with his graphing program SURF.

The 28 bitangents:

Apparently hand drawn by T. Shioda, from his paper *Weierstrass Transformations and Cubic Surfaces*.