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A town with a gallery and a guy looking at a picture of the town
with the gallery and him looking at the picture ...

but he is both the guy looking at the picture and the guy in the
picture!
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How he did it

I Draw a straight picture and copy it to a special grid that
“twists” it.

I Use curved grid to preserve angles.
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Escher’s Grid



The Straight picture

I The self reference of Escher’s picture is 256 times smaller
than the outside picture, so painting the whole straight
picture was virtually impossible.

I Instead, he drew portions of the picture at varying scales.

I Using his grid we can “unwind” his final picture to see the
straight one.
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The Math

Every image that contains a copy of itself has a center.
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The Math

I The fact that the picture contains a copy of itself just means
that it is invariant under multiplication by a scalar r, which we
will call the period.

I Escher’s twisted picture SHOULD have a complex period,
that is, it should be a picture that is invariant under both a
rotation and a scaling.
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What we will try to do

I Start with a straight self referential picture (i.e., with a real
period r).

I Transform it with a map C→ C so that:
I The map is conformal.
I The transformed picture has complex period.
I A loop in the transformed picture around the center

corresponds to a path around the center of the original picture
going from a point z to rz (r is the real period).
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Images with complex period

I A black and white image with a complex period δ can be
though of as a map

f : C→ {black, white}

such that
f(z) = f(δz)

for all z ∈ C.

I If we drop the origin we can actually think of this f as a
function

f : C∗/〈δ〉 → {black, white}

where 〈δ〉 = {δn | n ∈ Z} is the subgroup of C∗ generated by
δ.
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Coverings, Fundamental Groups

exp : C −→ C∗/〈δ〉
z 7−→ [ez] = ez〈δ〉

I exp is a covering space map and also a group homomorphism.

I The kernel is the lattice Lδ = 2πiZ + log(δ)Z.

I The isomorphism C/Lδ ∼= C∗/〈δ〉 is actually an isomorphism
of Riemann surfaces (i.e. it is biholomorphic) and gives us
another way to picture the torus C∗/〈δ〉.

I If |δ| 6= 1, we can think of Lδ as the fundamental group of the
torus.
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The Fundamental Group of C∗/〈δ〉

I Every element of Lδ corresponds to a unique loop of C∗/〈δ〉.

I This loop is the image under the exponential map of any path
starting at 0 and ending at the element of Lδ.

I Alternatively, Lδ are the endpoints of the lifts of loops in
π1(C∗/〈δ〉, 1).
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Back to Escher’s picture

I Start with a picture with real period r,

f : C∗/〈r〉 → {black, white}

I Transform it with a map C∗ → C∗ so that:
I The map is conformal.
I The map sends 1 to 1.
I The transformed picture has complex period δ.
I The process can be reversed.

I If this happens then we get an isomorphism (biholomorphic)
C∗/〈r〉 → C∗/〈δ〉 between Riemann surfaces sending 1 to 1.
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Back to Escher’s picture

I By the theory of covering spaces this map lifts to a map

C //

exp

��

C

exp

��
C∗/〈r〉 // C∗/〈δ〉

I The top map is holomorphic and we may assume that it sends
0 to 0.

I This map induces isomorphism C/Lr → C/Lδ between
Riemann surfaces.

I The theory of complex tori as Riemann surfaces (or complex
elliptic curves) implies that the map C→ C is multiplication
by a scalar α which satisfies

αLr = Lδ.



Loop Correspondence

I The loop correspondence

TwistedStraight

Straight Twisted

implies that multiplication by α sends the element
2πi+ log(r) to the element 2πi.

I So

α =
2πi

2πi+ log(r)
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Loop Correspondence

α =
2πi

2πi+ log(r)

I Finally, since we know α, and αLr = Lδ allows us to find δ.

I So, starting with r and the loop correspondence that Escher
wanted, we can find α and δ. So we can produce Escher’s
picture mathematically.
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Credits

I Hendrik Lenstra (Elliptic curve factorization) started to
wonder about this on a plane when he found the picture on a
magazine.

I Him and Bart de Smit wrote the article The Mathematical
Structure of Escher’s Print Gallery which was published in the
Notices of the AMS on April 2003.

I They also created a webpage with lots of images and videos.
http://escherdroste.math.leidenuniv.nl/

I Google “Escher Droste” to see what people have done with
this.
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Form Flickr’s Escher Droste Print Gallery group (1540 images)
trufflepig droste copy by manyone1
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