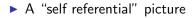
The Math behind Escher's Print Gallery

Enrique Acosta

Department of Mathematics University of Arizona

September 2009

► A "self referential" picture



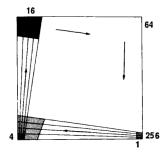
 A "self referential" picture where the self reference is the picture itself.

- ► A "self referential" picture where the self reference is the picture itself.
- As you go around the picture the scale increases so that when you return to where you started, you are now inside the self reference.

A town with a gallery and a guy looking at a picture of the town with the gallery and him looking at the picture ... but he is both the guy looking at the picture and the guy in the picture!

- ► A "self referential" picture where the self reference is the picture itself.
- As you go around the picture the scale increases so that when you return to where you started, you are now inside the self reference.

- ► A "self referential" picture where the self reference is the picture itself.
- As you go around the picture the scale increases so that when you return to where you started, you are now inside the self reference.
- ► As you go along each side the scale increases by a factor of 4.



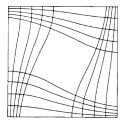
How he did it

How he did it

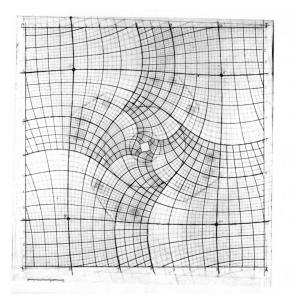
Draw a straight picture and copy it to a special grid that "twists" it.

How he did it

- Draw a straight picture and copy it to a special grid that "twists" it.
- Use curved grid to preserve angles.



Escher's Grid

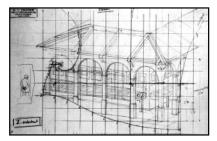


The Straight picture

The self reference of Escher's picture is 256 times smaller than the outside picture, so painting the whole straight picture was virtually impossible.

The Straight picture

- The self reference of Escher's picture is 256 times smaller than the outside picture, so painting the whole straight picture was virtually impossible.
- Instead, he drew portions of the picture at varying scales.

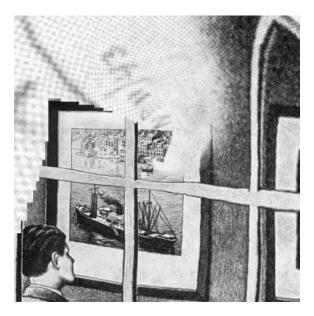


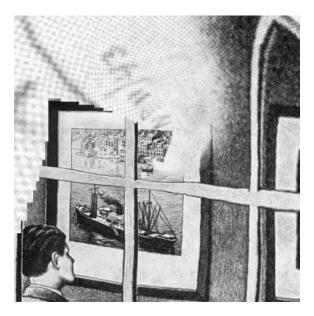
The Straight picture

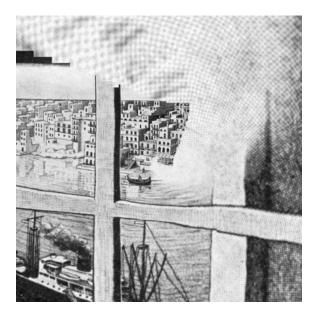
- The self reference of Escher's picture is 256 times smaller than the outside picture, so painting the whole straight picture was virtually impossible.
- Instead, he drew portions of the picture at varying scales.

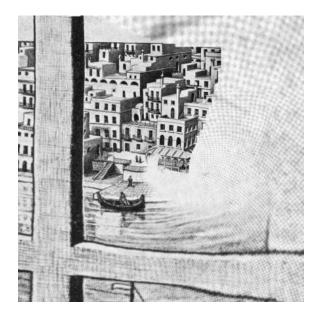


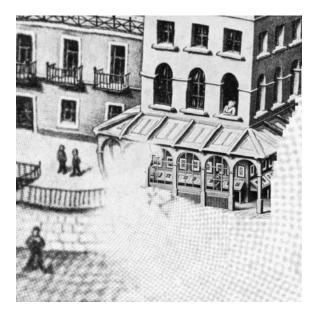
 Using his grid we can "unwind" his final picture to see the straight one.

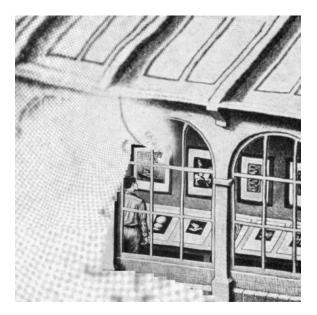


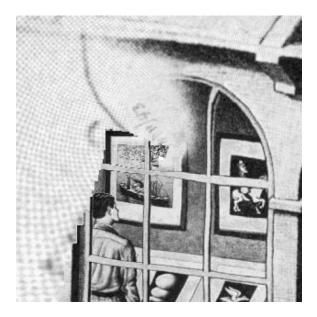


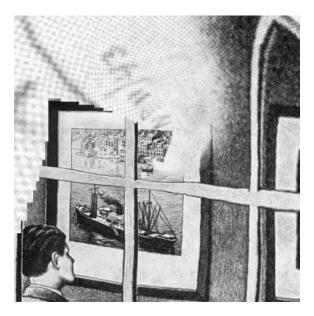




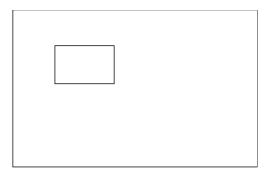




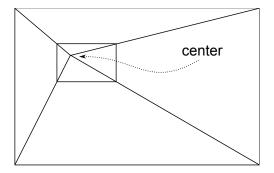




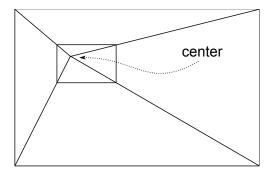
Every image that contains a copy of itself has a center.



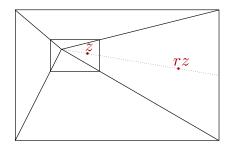
Every image that contains a copy of itself has a center.



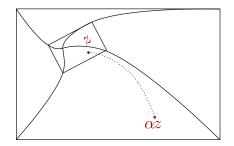
Every image that contains a copy of itself has a center.



Now place the picture in the complex plane with the center at the origin.



The fact that the picture contains a copy of itself just means that it is invariant under multiplication by a scalar r, which we will call the period.



- The fact that the picture contains a copy of itself just means that it is invariant under multiplication by a scalar r, which we will call the period.
- Escher's twisted picture SHOULD have a *complex period*. That is, it should be a picture that is invariant under both a rotation and a scaling.

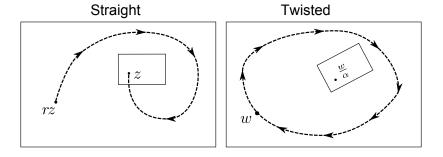
Start with a straight self referential picture (i.e., with a real period r).

- Start with a straight self referential picture (i.e., with a real period r).
- \blacktriangleright Transform it with a map $\mathbb{C} \to \mathbb{C}$ so that:

- Start with a straight self referential picture (i.e., with a real period r).
- \blacktriangleright Transform it with a map $\mathbb{C} \to \mathbb{C}$ so that:
 - The map is conformal.

- Start with a straight self referential picture (i.e., with a real period r).
- \blacktriangleright Transform it with a map $\mathbb{C} \to \mathbb{C}$ so that:
 - The map is conformal.
 - The transformed picture has complex period.

- Start with a straight self referential picture (i.e., with a real period r).
- \blacktriangleright Transform it with a map $\mathbb{C} \to \mathbb{C}$ so that:
 - ▶ The map is conformal.
 - The transformed picture has complex period.
 - ► A loop in the transformed picture around the center corresponds to a path around the center of the original picture going from a point z to rz (r is the real period).



Images with complex period

Images with complex period

 A black and white image with a complex period δ can be though of as a map

 $f: \mathbb{C} \to \{ \mathsf{black}, \mathsf{white} \}$

such that

$$f(z) = f(\delta z)$$

for all $z \in \mathbb{C}$.

Images with complex period

 A black and white image with a complex period δ can be though of as a map

$$f: \mathbb{C} \to \{ \mathsf{black}, \mathsf{white} \}$$

such that

$$f(z) = f(\delta z)$$

for all $z \in \mathbb{C}$.

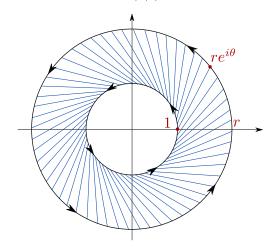
If we drop the origin we can actually think of this f as a function

$$f:\mathbb{C}^*/\langle\delta
angle
ightarrow\{ extsf{black}, extsf{white}\}$$

where $\langle \delta \rangle = \{ \delta^n \mid n \in \mathbb{Z} \}$ is the subgroup of \mathbb{C}^* generated by δ .

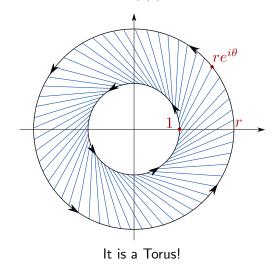
 ξ What is $\mathbb{C}^*/\langle \delta \rangle$ for $|\delta| > 1$?

Let $\delta = re^{i\theta}$. We can picture $\mathbb{C}^*/\langle \delta \rangle$ like below:



 ξ What is $\mathbb{C}^*/\langle \delta \rangle$ for $|\delta| > 1$?

Let $\delta = re^{i\theta}$. We can picture $\mathbb{C}^*/\langle \delta \rangle$ like below:



$$\exp: \mathbb{C} \longrightarrow \mathbb{C}^* / \langle \delta \rangle$$
$$z \longmapsto [e^z] = e^z \langle \delta \rangle$$

$$\begin{aligned} \exp: \mathbb{C} &\longrightarrow \mathbb{C}^* / \langle \delta \rangle \\ z &\longmapsto [e^z] = e^z \langle \delta \rangle \end{aligned}$$

exp is a covering space map and also a group homomorphism.

$$\begin{array}{rcl} \exp: \mathbb{C} & \longrightarrow & \mathbb{C}^* / \langle \delta \rangle \\ z & \longmapsto & [e^z] = e^z \langle \delta \rangle \end{array}$$

exp is a covering space map and also a group homomorphism.

• The kernel is the lattice $L_{\delta} = 2\pi i \mathbb{Z} + \log(\delta)\mathbb{Z}$.

$$\begin{array}{rcl} \exp: \mathbb{C} & \longrightarrow & \mathbb{C}^* / \langle \delta \rangle \\ z & \longmapsto & [e^z] = e^z \langle \delta \rangle \end{array}$$

- exp is a covering space map and also a group homomorphism.
- The kernel is the lattice $L_{\delta} = 2\pi i \mathbb{Z} + \log(\delta)\mathbb{Z}$.
- The isomorphism C/L_δ ≃ C*/⟨δ⟩ is actually an isomorphism of Riemann surfaces (i.e. it is biholomorphic) and gives us another way to picture the torus C*/⟨δ⟩.

$$\begin{array}{rcl} \exp: \mathbb{C} & \longrightarrow & \mathbb{C}^* / \langle \delta \rangle \\ z & \longmapsto & [e^z] = e^z \langle \delta \rangle \end{array}$$

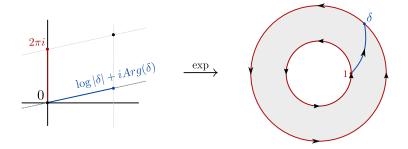
- exp is a covering space map and also a group homomorphism.
- The kernel is the lattice $L_{\delta} = 2\pi i \mathbb{Z} + \log(\delta)\mathbb{Z}$.
- The isomorphism C/L_δ ≃ C*/⟨δ⟩ is actually an isomorphism of Riemann surfaces (i.e. it is biholomorphic) and gives us another way to picture the torus C*/⟨δ⟩.
- If |δ| ≠ 1, we can think of L_δ as the fundamental group of the torus.

The Fundamental Group of $\mathbb{C}^*/\langle \delta \rangle$

• Every element of L_{δ} corresponds to a unique loop of $\mathbb{C}^*/\langle \delta \rangle$.

The Fundamental Group of $\mathbb{C}^*/\langle \delta \rangle$

- Every element of L_{δ} corresponds to a unique loop of $\mathbb{C}^*/\langle \delta \rangle$.
- This loop is the image under the exponential map of any path starting at 0 and ending at the element of L_δ.
- Alternatively, L_{δ} are the endpoints of the lifts of loops in $\pi_1(\mathbb{C}^*/\langle \delta \rangle, 1)$.



Back to Escher's picture

• Start with a picture with real period r,

$$f:\mathbb{C}^*/\langle r
angle
ightarrow \{ extsf{black}, extsf{white}\}$$

 \blacktriangleright Transform it with a map $\mathbb{C}^* \to \mathbb{C}^*$ so that:

- The map is conformal.
- ▶ The map sends 1 to 1.
- The transformed picture has complex period δ .
- The process can be reversed.

Back to Escher's picture

Start with a picture with real period r,

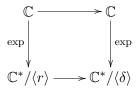
$$f:\mathbb{C}^*/\langle r
angle
ightarrow \{ extsf{black}, extsf{white}\}$$

• Transform it with a map $\mathbb{C}^* \to \mathbb{C}^*$ so that:

- The map is conformal.
- ▶ The map sends 1 to 1.
- The transformed picture has complex period δ .
- The process can be reversed.
- ▶ If this happens then we get an isomorphism (biholomorphic) $\mathbb{C}^*/\langle r \rangle \to \mathbb{C}^*/\langle \delta \rangle$ between Riemann surfaces sending 1 to 1.

Back to Escher's picture

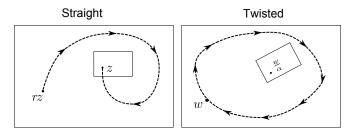
By the theory of covering spaces this map lifts to a map



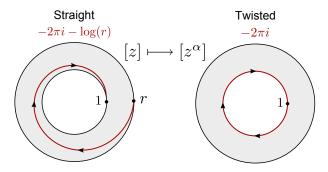
- The top map is holomorphic and we may assume that it sends 0 to 0.
- ► This map induces isomorphism $\mathbb{C}/L_r \to \mathbb{C}/L_\delta$ between Riemann surfaces.
- ▶ The theory of complex tori as Riemann surfaces (or complex elliptic curves) implies that the map $\mathbb{C} \to \mathbb{C}$ is multiplication by a scalar α which satisfies

$$\alpha L_r = L_\delta.$$

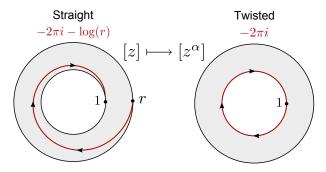
► The loop correspondence



► The loop correspondence

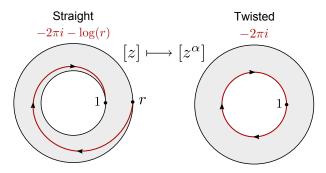


The loop correspondence



implies that multiplication by α sends the element $2\pi i + \log(r)$ to the element $2\pi i$.

The loop correspondence



implies that multiplication by α sends the element $2\pi i + \log(r)$ to the element $2\pi i.$

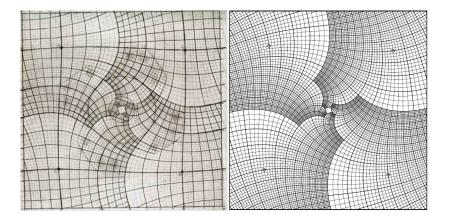
So

$$\alpha = \frac{2\pi i}{2\pi i + \log(r)}$$

$$\alpha = \frac{2\pi i}{2\pi i + \log(r)}$$

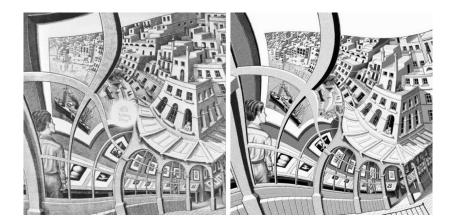
- Finally, since we know α , and $\alpha L_r = L_{\delta}$ allows us to find δ .
- So, starting with r and the loop correspondence that Escher wanted, we can find α and δ. So we can produce Escher's picture mathematically.

The mathematically precise grid



The mathematically precise picture

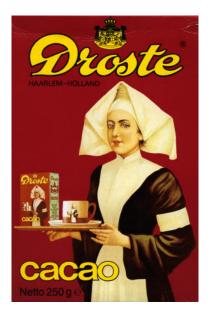
The mathematically precise picture



VIDEO

Credits

- Hendrik Lenstra (Elliptic curve factorization) started to wonder about this on a plane when he found the picture on a magazine.
- Him and Bart de Smit wrote the article The Mathematical Structure of Escher's Print Gallery which was published in the Notices of the AMS on April 2003.
- They also created a webpage with lots of images and videos. http://escherdroste.math.leidenuniv.nl/
- Google "Escher Droste" to see what people have done with this.



Variations

Variations

Variations

Form Flickr's Escher Droste Print Gallery group (1540 images) trufflepig droste copy by manyone1

VIDEO