
M0,n

Part I

Enrique Acosta

Department of Mathematics
University of Arizona

October 2011



(Fine) Moduli Space of Curves

Let P be a property that curves may satisfy.

Family of Curves

X,B varieties (or schemes), and a morphism

π : X → B

so that the fibers of this map are all P -curves, and π is compatible
with the P -structure.

Example

If P says the curve has only one singularity, then a family X → B
should come with a morphism s : B → X (a section) that tell us
which is the singular point on the fiber.
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Equivalence of Families of P -Curves

We say that X → B, Y → B are equivalent families of P -curves if
there is an isomorphism X → Y making the diagram commute

X //

  

Y

~~
B

and that preserves all the extra structure that P imposes (this
needs to be specified precisely and depends on P ).

Example

If P says there is a unique singular point, then it is natural to
require that the map X → Y should be taking the singular points
in the fiber to the corresponding singular points in the other fiber.
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X //

  

Y

~~
B

Equivalence of P -curves

I The notion of equivalence of families includes the notion of
equivalence of P -curves since we can take B = {•}.

I We call this a P -isomorphism.



Fine Moduli Space of P -curves

Is a variety (scheme, orbifold, stack) MP such that:

I The points of MP are in bijection with P -isomorphism classes
of P -curves.

I The morphisms B →MP are in bijection with the collection
of equivalence classes of families of P curves.

I These identifications are as nice as possible (read:
functorially). This means precisely that:

I The identification sending a scheme B to the collection of
equivalence classes of families of P -curves over B is a functor.

I This functor is isomorphic to Hom(−,MP ).
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What this gives you...

As an example, take a curve C in MP .

I Each point in C corresponds to a P -curve (up to P -iso).

I As you move the point along C the curve is gradually
changing.

I There is in general no good reason to expect to be able to
glue all these curves into a surface, but in this case the
properties of MP imply the existence of this surface!

I The simple inclusion C ↪→MP gives automatically a family
X → C with Xp (fiber above p) equal to the P -curve that it
corresponds to.
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What this gives you...

The Universal Family

I The identity map id :MP →MP gives a family U →MP

which is called the universal family.

I The fiber Up above the point p ∈MP is precisely the P
-curve that p represents up to P -isomorphism (by functorial
arguments).

I Moreover, since any family X → B gives a map B →MP ,
then functorial arguments show that X → B is the pullback
of the family U →MP .

I This is why U is called the universal family!
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Example: Pn is a moduli space of curves

I The property P here is being a line in kn+1.

I A family here is

X

��

� � // B × kn+1

zz
B

where the fiber Xb corresponds under the horizontal map to
b× Lb where Lb is a line through the origin.

I Two families X1 → B and X2 → B are said to be equivalent
if there is an isomorphism X1 → X2 which preserves the
fibers together with their identification as lines in kn+1

coming from the structure map.

I The universal family in this case is
U = {[l]× x | x ∈ l} ⊂ Pn × kn+1.



Example: Pn is a moduli space of curves

I The property P here is being a line in kn+1.

I A family here is

X

��

� � // B × kn+1

zz
B

where the fiber Xb corresponds under the horizontal map to
b× Lb where Lb is a line through the origin.

I Two families X1 → B and X2 → B are said to be equivalent
if there is an isomorphism X1 → X2 which preserves the
fibers together with their identification as lines in kn+1

coming from the structure map.

I The universal family in this case is
U = {[l]× x | x ∈ l} ⊂ Pn × kn+1.



Example: Pn is a moduli space of curves

I The property P here is being a line in kn+1.

I A family here is

X

��

� � // B × kn+1

zz
B

where the fiber Xb corresponds under the horizontal map to
b× Lb where Lb is a line through the origin.

I Two families X1 → B and X2 → B are said to be equivalent
if there is an isomorphism X1 → X2 which preserves the
fibers together with their identification as lines in kn+1

coming from the structure map.

I The universal family in this case is
U = {[l]× x | x ∈ l} ⊂ Pn × kn+1.



Example: Pn is a moduli space of curves

I The property P here is being a line in kn+1.

I A family here is

X

��

� � // B × kn+1

zz
B

where the fiber Xb corresponds under the horizontal map to
b× Lb where Lb is a line through the origin.

I Two families X1 → B and X2 → B are said to be equivalent
if there is an isomorphism X1 → X2 which preserves the
fibers together with their identification as lines in kn+1

coming from the structure map.

I The universal family in this case is
U = {[l]× x | x ∈ l} ⊂ Pn × kn+1.



Example: Pn is a moduli space of curves

I The property P here is being a line in kn+1.

I A family here is

X

��

� � // B × kn+1

zz
B

where the fiber Xb corresponds under the horizontal map to
b× Lb where Lb is a line through the origin.

I Two families X1 → B and X2 → B are said to be equivalent
if there is an isomorphism X1 → X2 which preserves the
fibers together with their identification as lines in kn+1

coming from the structure map.

I The universal family in this case is
U = {[l]× x | x ∈ l} ⊂ Pn × kn+1.



The Moduli space of genus zero curves

The ingredients here are:

I P : Smooth genus zero curve with n distinct marked points.

I We will call a P -curve and n-curve.

I Family: X → B with Xb a genus zero curve for all b ∈ B and
n disjoint sections s1, . . . , sn : B → X which give you the
distinct n marked points on Xb.

I Equivalence of families is given by isomorphisms X1 → X2

that preserve fibers and send sections to sections.
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The Moduli space of genus zero curves

I There is no moduli space for n = 0, 1, 2.

I This has to do with the fact that genus zero curves have lots
of automorphisms.

I Fixing n < 2 points does not remove enough automorphisms
(there are infinitely automorphisms of P1 sending two fixed
points to 0, 1, but the is a unique automorphism of P1 sending
any three points to 0, 1,∞).

I There is a (fine) moduli space for n ≥ 3! We call it M0,n.
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M0,3

M0,3 = {•} since there is only one equivalence class of smooth
genus zero curves up to 3-isomorphism.



M0,4

I Any smooth C curve genus zero curve with 4 fixed points
p1, . . . , p4 is isomorphic as a 4-curve to a unique
(P1, 0, 1,∞, p′4).

I p′4 ∈ P1 − {0, 1,∞}, and it determines the isomorphism class
of the 4-curve.

I If the curve was explicitly P1 at the beginning, then one can
show that p′4 is actually the cross-ratio of the points
p1, p2, p3, p4.

I We have
M0,4 = P1 − {0, 1,∞}

(this needs to be checked!)
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Example (Renzo’s)

I Consider the family of 4-curves Ct = (P1, 0, 1,∞, t) over
A1 − {0, 1} (it does not extend to a family of 4-curves over 0
or 1 because two points would agree).

I Explicitly, the family given by

P1 × (A1 − {0, 1}) → A1 − {0, 1}
p× t 7→ t

with the three constant sections 0, 1,∞ and the section
t 7→ t× t.

I Since M0,4 is a fine moduli space, then this family gives a
morphism

A1 − {0, 1} →M0,4
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Ct = (P1, 0, 1,∞, t)
I Now Dt = (0, t−1,∞, 1) is another family over A1 − {0, 1}

and so gives another morphism

A1 − {0, 1} →M0,4

I But for each t 6= 0, Ct = Dt up to a 4-isomorphism since the
map sending

Dt → Ct

p 7→ tp

is a 4-isomorphism.

I This implies that the families Ct and Dt for t 6= 0 give the
same morphism from A1

t − {0, 1} to M0,4.
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M0,n for n ≥ 3

I In general, sending the first three points in p1, . . . , pn to
0, 1,∞ gives the tuple p′4, . . . , p

′
n ∈ P1 − {0, 1,∞} which

determines the curve up to n-isomorphism.

I One can prove that

M0,n = (P1 − {0, 1,∞})n−3 − {diagonals}

where one identifies the n-curve with the p′i (none of the p′i
can agree!)
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The Universal family over M0,n

The universal family is given by

Un =M0,n × P1

��
M0,n

where the sections come from the constant sections 0, 1,∞, and
the sections si is given by

si :M0,n → Un

(p′4, . . . , p
′
n) × (p′4, . . . , p

′
n)× p′i

for i = 4, . . . , n.



The Universal family over M0,n

Example n = 4

s4 is the diagonal in P1 × P1 minus the points 0× 0, 1× 1,∞×∞
which lie over the points in P1 −M0,n.

0

1

(0,0)

(1,1)

( ),

4

3

2

1

0 1
M

U4

0,4

1PI

Figure 1: first attempt at compactifying U4

1. Each irreducible component is isomorphic to 1.

2. The points of intersection of the components are ordinary double points.

3. There are no closed circuits, i.e., if a node is removed then the curve
becomes disconnected.

These three properties are equivalent to saying that the curve has arith-
metic genus zero. Each irreducible component will be called a twig. We will
often draw a marked tree as in fig 2, where each line represents a twig.

Figure 2: stable marked trees.

Definition 7. A marked tree is stable if every twig has at least three special
points (marks or nodes).

This stability condition is equivalent to the existence of no nontrivial
automorphisms of the tree that fix all of the marks.

25

(picture taken from Renzo’s notes)



The Problem....

I These M0,n are not compact, or proper, or projective.

I This is not good for considering degenerations. We want to
compactify M0,n.

I We would like a space in which if we have a family of n-curves
in which p1 → p2, then there is a well defined (and unique)
limit curve.

I We need to find another property P ′ which includes n-curves
but has more things to make everything work, including the
existence of a fine moduli space.

I The answer: The concept of stable curves.

I We first analyze the case n = 4 an see some motivation for
the definition.
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1. Each irreducible component is isomorphic to 1.

2. The points of intersection of the components are ordinary double points.

3. There are no closed circuits, i.e., if a node is removed then the curve
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These three properties are equivalent to saying that the curve has arith-
metic genus zero. Each irreducible component will be called a twig. We will
often draw a marked tree as in fig 2, where each line represents a twig.

Figure 2: stable marked trees.

Definition 7. A marked tree is stable if every twig has at least three special
points (marks or nodes).

This stability condition is equivalent to the existence of no nontrivial
automorphisms of the tree that fix all of the marks.

25

I The family is not defined at 0, 1,∞ because p4 can’t be any
of these.

I One may think that the answer is to enlarge M0,4 to P1, and
let the three extra curves it parametrizes be the ones above,
where p1 = p4 above 0, p2 = p4 above 1 and p3 = p4 above
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I This, first of all is not symmetric (we don’t have p1 → p2 for
example)

I It also does not work!
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Renzo’s Example

Consider the families Ct = (0, 1,∞, t) and Dt = (0, t−1,∞, 1) over
A1
t .

I For each t 6= 0, Ct = Dt up to a 4-isomorphism as we saw
before, and and so the families Ct and Dt for t 6= 0 give the
same morphism from A1

t − {0, 1} to M0,4.

I For t = 0, C0 has p1 = p4 whereas D0 has p2 = p3.

I These configurations are not equivalent up to 4-isomorphism,
and so should be considered as distinct points in our
compactification of M0,4.

I Thus, our map A1
t − {0, 1} →M0,4 ⊂ P1 would need to

extend in two different ways at t = 0!

I This at least hints at the fact that, whatever our space should
be, it should identify the situations p1 → p4 and p2 → p3.
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Definition 7. A marked tree is stable if every twig has at least three special
points (marks or nodes).

This stability condition is equivalent to the existence of no nontrivial
automorphisms of the tree that fix all of the marks.
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I Blow-up P1 × P1 at the points 0× 0, 1× 1,∞×∞.

I This separates the sections and so we get a family of curves
that extends to all of P1 where all the fibers now have 4
distinct marked points.
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I The three curves it parametrizes that are not smooth are
shown in the picture.

I The first curve corresponds to p1 → p4 or p2 → p3 (this
brings the symmetry back!).

I These 3 curves are unique up to 4-isomorphism! (any
isomorphism must map the singularity to the singularity).

I These 3 new curves have no nontrivial 4-automorphisms.

I Instead of letting the points collide, the space M0,4 adds one
more P1 where it puts the points that tried to collide. This is
the way it stores the information that the collided.
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Ana-Maria’s picture of the situation:



Stable genus zero n-pointed curves (stable n-curves)
A stable genus zero n-curve is a curve with n marked points that
has the following properties:
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Figure 1: first attempt at compactifying U4

1. Each irreducible component is isomorphic to 1.

2. The points of intersection of the components are ordinary double points.

3. There are no closed circuits, i.e., if a node is removed then the curve
becomes disconnected.

These three properties are equivalent to saying that the curve has arith-
metic genus zero. Each irreducible component will be called a twig. We will
often draw a marked tree as in fig 2, where each line represents a twig.

Figure 2: stable marked trees.

Definition 7. A marked tree is stable if every twig has at least three special
points (marks or nodes).

This stability condition is equivalent to the existence of no nontrivial
automorphisms of the tree that fix all of the marks.

25

(picture taken from Renzo’s notes)

I It is connected.
I Each irreducible component is isomorphic to P1.
I If two P1’s intersect, then they do so transversally.
I The curve has (arithmetic) genus zero. This implies that there

are no closed circuits.
I Each component has at least 3 special (singular or marked)

points, and no marked point is singular.
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I Two stable curves are said to be n-isomorphic if there is an
isomorphism preserving the markings.

I This isomorphism necessarily preserves the singularities!

I Stable n-curves have no automorphisms preserving the
markings (no n-automorphisms).
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The Moduli Space M0,n

There is a (fine) moduli space for stable n-curves for n ≥ 3!
Moreover:

I M0,n is smooth, compact, and projective!

I M0,n is open in M0,n.

I M0,n −M0,n (closed) is a reducible divisor, and any two of its
components intersect transversally.

I The universal family Un is M0,n+1 ! (more details on this
later).

Some History

It was first constructed by Knudsen in 1983. One of the highlights
of modern algebraic geometry.



The Moduli Space M0,n

There is a (fine) moduli space for stable n-curves for n ≥ 3!
Moreover:

I M0,n is smooth, compact, and projective!

I M0,n is open in M0,n.

I M0,n −M0,n (closed) is a reducible divisor, and any two of its
components intersect transversally.

I The universal family Un is M0,n+1 ! (more details on this
later).

Some History

It was first constructed by Knudsen in 1983. One of the highlights
of modern algebraic geometry.



The Moduli Space M0,n

There is a (fine) moduli space for stable n-curves for n ≥ 3!
Moreover:

I M0,n is smooth, compact, and projective!

I M0,n is open in M0,n.

I M0,n −M0,n (closed) is a reducible divisor, and any two of its
components intersect transversally.

I The universal family Un is M0,n+1 ! (more details on this
later).

Some History

It was first constructed by Knudsen in 1983. One of the highlights
of modern algebraic geometry.



The Moduli Space M0,n

There is a (fine) moduli space for stable n-curves for n ≥ 3!
Moreover:

I M0,n is smooth, compact, and projective!

I M0,n is open in M0,n.

I M0,n −M0,n (closed) is a reducible divisor, and any two of its
components intersect transversally.

I The universal family Un is M0,n+1 ! (more details on this
later).

Some History

It was first constructed by Knudsen in 1983. One of the highlights
of modern algebraic geometry.



The Moduli Space M0,n

There is a (fine) moduli space for stable n-curves for n ≥ 3!
Moreover:

I M0,n is smooth, compact, and projective!

I M0,n is open in M0,n.

I M0,n −M0,n (closed) is a reducible divisor, and any two of its
components intersect transversally.

I The universal family Un is M0,n+1 ! (more details on this
later).

Some History

It was first constructed by Knudsen in 1983. One of the highlights
of modern algebraic geometry.



The Moduli Space M0,n

There is a (fine) moduli space for stable n-curves for n ≥ 3!
Moreover:

I M0,n is smooth, compact, and projective!

I M0,n is open in M0,n.

I M0,n −M0,n (closed) is a reducible divisor, and any two of its
components intersect transversally.

I The universal family Un is M0,n+1 ! (more details on this
later).

Some History

It was first constructed by Knudsen in 1983. One of the highlights
of modern algebraic geometry.



Example: The universal family U4 is M0,5!

Take a point p ∈ U4 (we will find a stable 5-curve is corresponds
to).

I p is in some fiber of the map, say above q.

I If it is not in one of the sections, and not one of the singular
points of the special fibers, then the stable 5-curve it
corresponds to is the fiber with the marked points
(σ1(q), . . . , σ4(q), p = p5).

I Otherwise we need to stabilize the curve.
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Example: The universal family U4 is M0,5!

Stabilization

I If p is not in one of the sections, but it is a singular point of
one of the special ones, then replace the singular point by a
P1 and place p = p5 in this new P1.



Stabilization

I If p is in one of the sections, say σ4 then take the fiber and
add a P1 at σ4(q) and put p4 and p5 on this new P1 (this is
unique up to isomorphism).

p1

p2

p3

p4 = p5

p1

p2

p3

p4
p5



This takes care of all isomorphism classes of 5-curves!
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Figure 7: boundary cycles of M0,5
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(picture taken from Renzo’s notes)
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