$\overline{M_{0,n}}$ Part I

Enrique Acosta

Department of Mathematics University of Arizona

October 2011

(Fine) Moduli Space of Curves

Let P be a property that curves may satisfy.

(Fine) Moduli Space of Curves

Let \boldsymbol{P} be a property that curves may satisfy.

Family of Curves

X, B varieties (or schemes), and a morphism

 $\pi:X\to B$

so that the fibers of this map are all $P\text{-}{\rm curves},$ and π is compatible with the $P\text{-}{\rm structure}.$

(Fine) Moduli Space of Curves

Let \boldsymbol{P} be a property that curves may satisfy.

Family of Curves

 $\boldsymbol{X},\boldsymbol{B}$ varieties (or schemes), and a morphism

 $\pi:X\to B$

so that the fibers of this map are all $P\text{-}{\rm curves},$ and π is compatible with the $P\text{-}{\rm structure}.$

Example

If P says the curve has only one singularity, then a family $X \to B$ should come with a morphism $s: B \to X$ (a section) that tell us which is the singular point on the fiber.

Equivalence of Families of *P*-Curves

We say that $X \to B$, $Y \to B$ are equivalent families of *P*-curves if there is an isomorphism $X \to Y$ making the diagram commute

and that preserves all the extra structure that P imposes (this needs to be specified precisely and depends on P).

Equivalence of Families of P-Curves

We say that $X \to B$, $Y \to B$ are equivalent families of *P*-curves if there is an isomorphism $X \to Y$ making the diagram commute

and that preserves all the extra structure that P imposes (this needs to be specified precisely and depends on P).

Example

If P says there is a unique singular point, then it is natural to require that the map $X \to Y$ should be taking the singular points in the fiber to the corresponding singular points in the other fiber.

Equivalence of *P*-curves

- ► The notion of equivalence of families includes the notion of equivalence of P-curves since we can take B = {●}.
- We call this a *P*-isomorphism.

Is a variety (scheme, orbifold, stack) \mathcal{M}_P such that:

► The points of *M_P* are in bijection with *P*-isomorphism classes of *P*-curves.

- ► The points of *M_P* are in bijection with *P*-isomorphism classes of *P*-curves.
- ► The morphisms B → M_P are in bijection with the collection of equivalence classes of families of P curves.

- ► The points of *M_P* are in bijection with *P*-isomorphism classes of *P*-curves.
- ► The morphisms B → M_P are in bijection with the collection of equivalence classes of families of P curves.
- These identifications are as nice as possible (read: functorially). This means precisely that:

- ► The points of *M_P* are in bijection with *P*-isomorphism classes of *P*-curves.
- ► The morphisms B → M_P are in bijection with the collection of equivalence classes of families of P curves.
- These identifications are as nice as possible (read: functorially). This means precisely that:
 - ► The identification sending a scheme *B* to the collection of equivalence classes of families of *P*-curves over *B* is a functor.

- ► The points of *M_P* are in bijection with *P*-isomorphism classes of *P*-curves.
- ► The morphisms B → M_P are in bijection with the collection of equivalence classes of families of P curves.
- These identifications are as nice as possible (read: functorially). This means precisely that:
 - ► The identification sending a scheme *B* to the collection of equivalence classes of families of *P*-curves over *B* is a functor.
 - This functor is isomorphic to $Hom(-, M_P)$.

As an example, take a curve C in \mathcal{M}_P .

► Each point in C corresponds to a P-curve (up to P-iso).

- ▶ Each point in C corresponds to a P-curve (up to P-iso).
- As you move the point along C the curve is gradually changing.

- ▶ Each point in C corresponds to a P-curve (up to P-iso).
- ► As you move the point along C the curve is gradually changing.
- There is in general no good reason to expect to be able to glue all these curves into a surface,

- ▶ Each point in C corresponds to a P-curve (up to P-iso).
- ► As you move the point along C the curve is gradually changing.
- There is in general no good reason to expect to be able to glue all these curves into a surface, but in this case the properties of *M_P* imply the existence of this surface!

- ▶ Each point in C corresponds to a P-curve (up to P-iso).
- ► As you move the point along C the curve is gradually changing.
- There is in general no good reason to expect to be able to glue all these curves into a surface, but in this case the properties of *M_P* imply the existence of this surface!
- ► The simple inclusion C → M_P gives automatically a family X → C with X_p (fiber above p) equal to the P-curve that it corresponds to.

The Universal Family

► The identity map *id* : M_P → M_P gives a family U → M_P which is called the universal family.

The Universal Family

- ► The identity map *id* : M_P → M_P gives a family U → M_P which is called the universal family.
- ▶ The fiber U_p above the point $p \in \mathcal{M}_P$ is precisely the P-curve that p represents up to P-isomorphism (by functorial arguments).

The Universal Family

- ► The identity map *id* : M_P → M_P gives a family U → M_P which is called the universal family.
- ► The fiber U_p above the point p ∈ M_P is precisely the P -curve that p represents up to P-isomorphism (by functorial arguments).
- Moreover, since any family $X \to B$ gives a map $B \to \mathcal{M}_P$, then functorial arguments show that $X \to B$ is the pullback of the family $U \to \mathcal{M}_P$.

The Universal Family

- ► The identity map *id* : M_P → M_P gives a family U → M_P which is called the universal family.
- ▶ The fiber U_p above the point $p \in \mathcal{M}_P$ is precisely the P-curve that p represents up to P-isomorphism (by functorial arguments).
- Moreover, since any family $X \to B$ gives a map $B \to \mathcal{M}_P$, then functorial arguments show that $X \to B$ is the pullback of the family $U \to \mathcal{M}_P$.
- ► This is why U is called the universal family!

• The property P here is being a line in k^{n+1} .

- The property P here is being a line in k^{n+1} .
- A family here is

where the fiber X_b corresponds under the horizontal map to $b \times L_b$ where L_b is a line through the origin.

- The property P here is being a line in k^{n+1} .
- ► A family here is

where the fiber X_b corresponds under the horizontal map to $b \times L_b$ where L_b is a line through the origin.

▶ Two families $X_1 \rightarrow B$ and $X_2 \rightarrow B$ are said to be equivalent if there is an isomorphism $X_1 \rightarrow X_2$ which preserves the fibers together with their identification as lines in k^{n+1} coming from the structure map.

- The property P here is being a line in k^{n+1} .
- A family here is

where the fiber X_b corresponds under the horizontal map to $b \times L_b$ where L_b is a line through the origin.

- ► Two families X₁ → B and X₂ → B are said to be equivalent if there is an isomorphism X₁ → X₂ which preserves the fibers together with their identification as lines in kⁿ⁺¹ coming from the structure map.
- ► The universal family in this case is $U = \{[l] \times x \mid x \in l\} \subset \mathbb{P}^n \times k^{n+1}.$

The ingredients here are:

• P: Smooth genus zero curve with n distinct marked points.

The ingredients here are:

- P: Smooth genus zero curve with n distinct marked points.
- ▶ We will call a *P*-curve and *n*-curve.

The ingredients here are:

- P: Smooth genus zero curve with n distinct marked points.
- ▶ We will call a *P*-curve and *n*-curve.
- Family: X → B with X_b a genus zero curve for all b ∈ B and n disjoint sections s₁,..., s_n : B → X which give you the distinct n marked points on X_b.

The ingredients here are:

- ▶ *P*: Smooth genus zero curve with *n* distinct marked points.
- ▶ We will call a *P*-curve and *n*-curve.
- Family: X → B with X_b a genus zero curve for all b ∈ B and n disjoint sections s₁,..., s_n : B → X which give you the distinct n marked points on X_b.
- ► Equivalence of families is given by isomorphisms X₁ → X₂ that preserve fibers and send sections to sections.

• There is no moduli space for n = 0, 1, 2.

- There is no moduli space for n = 0, 1, 2.
- This has to do with the fact that genus zero curves have lots of automorphisms.

- There is no moduli space for n = 0, 1, 2.
- This has to do with the fact that genus zero curves have lots of automorphisms.
- Fixing n < 2 points does not remove enough automorphisms (there are infinitely automorphisms of P¹ sending two fixed points to 0, 1, but the is a unique automorphism of P¹ sending any three points to 0, 1, ∞).

- There is no moduli space for n = 0, 1, 2.
- This has to do with the fact that genus zero curves have lots of automorphisms.
- Fixing n < 2 points does not remove enough automorphisms (there are infinitely automorphisms of P¹ sending two fixed points to 0, 1, but the is a unique automorphism of P¹ sending any three points to 0, 1, ∞).
- There is a (fine) moduli space for $n \ge 3!$ We call it $M_{0,n}$.

$M_{0,3}$

 $M_{0,3} = \{\bullet\}$ since there is only one equivalence class of smooth genus zero curves up to 3-isomorphism.
$\mathbf{M}_{0,4}$

Any smooth C curve genus zero curve with 4 fixed points p_1, \ldots, p_4 is isomorphic as a 4-curve to a unique $(\mathbb{P}^1, 0, 1, \infty, p'_4)$.

$\mathbf{M}_{0,4}$

- Any smooth C curve genus zero curve with 4 fixed points p₁,..., p₄ is isomorphic as a 4-curve to a unique (ℙ¹, 0, 1, ∞, p'₄).
- ▶ $p_4' \in \mathbb{P}^1 \{0, 1, \infty\}$, and it determines the isomorphism class of the 4-curve.

$\mathbf{M}_{\mathbf{0,4}}$

- Any smooth C curve genus zero curve with 4 fixed points p_1, \ldots, p_4 is isomorphic as a 4-curve to a unique $(\mathbb{P}^1, 0, 1, \infty, p'_4)$.
- ▶ $p'_4 \in \mathbb{P}^1 \{0, 1, \infty\}$, and it determines the isomorphism class of the 4-curve.
- ► If the curve was explicitly P¹ at the beginning, then one can show that p'₄ is actually the cross-ratio of the points p₁, p₂, p₃, p₄.

$\mathbf{M}_{0,4}$

- Any smooth C curve genus zero curve with 4 fixed points p_1, \ldots, p_4 is isomorphic as a 4-curve to a unique $(\mathbb{P}^1, 0, 1, \infty, p'_4)$.
- ▶ $p'_4 \in \mathbb{P}^1 \{0, 1, \infty\}$, and it determines the isomorphism class of the 4-curve.
- ► If the curve was explicitly P¹ at the beginning, then one can show that p'₄ is actually the cross-ratio of the points p₁, p₂, p₃, p₄.
- We have

$$M_{0,4} = \mathbb{P}^1 - \{0, 1, \infty\}$$

$\mathbf{M}_{0,4}$

- Any smooth C curve genus zero curve with 4 fixed points p_1, \ldots, p_4 is isomorphic as a 4-curve to a unique $(\mathbb{P}^1, 0, 1, \infty, p'_4)$.
- ▶ $p'_4 \in \mathbb{P}^1 \{0, 1, \infty\}$, and it determines the isomorphism class of the 4-curve.
- ► If the curve was explicitly P¹ at the beginning, then one can show that p'₄ is actually the cross-ratio of the points p₁, p₂, p₃, p₄.
- We have

$$M_{0,4} = \mathbb{P}^1 - \{0, 1, \infty\}$$

(this needs to be checked!)

Example (Renzo's)

 Consider the family of 4-curves Ct = (P¹, 0, 1, ∞, t) over A¹ - {0, 1} (it does not extend to a family of 4-curves over 0 or 1 because two points would agree).

Example (Renzo's)

- Consider the family of 4-curves C_t = (ℙ¹, 0, 1, ∞, t) over A¹ - {0, 1} (it does not extend to a family of 4-curves over 0 or 1 because two points would agree).
- Explicitly, the family given by

$$\mathbb{P}^1 \times (\mathbb{A}^1 - \{0, 1\}) \rightarrow \mathbb{A}^1 - \{0, 1\}$$
$$p \times t \mapsto t$$

with the three constant sections $0, 1, \infty$ and the section $t \mapsto t \times t$.

Example (Renzo's)

- Consider the family of 4-curves C_t = (ℙ¹, 0, 1, ∞, t) over A¹ - {0, 1} (it does not extend to a family of 4-curves over 0 or 1 because two points would agree).
- Explicitly, the family given by

$$\mathbb{P}^1 \times (\mathbb{A}^1 - \{0, 1\}) \to \mathbb{A}^1 - \{0, 1\}$$
$$p \times t \mapsto t$$

with the three constant sections $0, 1, \infty$ and the section $t \mapsto t \times t$.

► Since M_{0,4} is a fine moduli space, then this family gives a morphism

$$\mathbb{A}^1 - \{0, 1\} \to M_{0,4}$$

- $C_t = (\mathbb{P}^1, 0, 1, \infty, t)$
 - Now D_t = (0, t⁻¹, ∞, 1) is another family over A¹ {0, 1} and so gives another morphism

$$\mathbb{A}^1 - \{0, 1\} \to M_{0,4}$$

- $C_t = (\mathbb{P}^1, 0, 1, \infty, t)$
 - ▶ Now $D_t = (0, t^{-1}, \infty, 1)$ is another family over $\mathbb{A}^1 \{0, 1\}$ and so gives another morphism

$$\mathbb{A}^1 - \{0, 1\} \to M_{0,4}$$

▶ But for each t ≠ 0, Ct = Dt up to a 4-isomorphism since the map sending

$$\begin{array}{rccc} D_t & \to & C_t \\ p & \mapsto & tp \end{array}$$

is a 4-isomorphism.

- $C_t = (\mathbb{P}^1, 0, 1, \infty, t)$
 - Now D_t = (0, t⁻¹, ∞, 1) is another family over A¹ {0, 1} and so gives another morphism

$$\mathbb{A}^1 - \{0, 1\} \to M_{0,4}$$

▶ But for each t ≠ 0, Ct = Dt up to a 4-isomorphism since the map sending

$$\begin{array}{rccc} D_t & \to & C_t \\ p & \mapsto & tp \end{array}$$

is a 4-isomorphism.

► This implies that the families C_t and D_t for t ≠ 0 give the same morphism from A¹_t - {0, 1} to M_{0,4}.

$\mathbf{M}_{\mathbf{0},\mathbf{n}}$ for $n \geq 3$

▶ In general, sending the first three points in p_1, \ldots, p_n to $0, 1, \infty$ gives the tuple $p'_4, \ldots, p'_n \in \mathbb{P}^1 - \{0, 1, \infty\}$ which determines the curve up to *n*-isomorphism.

$\mathbf{M_{0,n}} \text{ for } n \geq 3$

- ▶ In general, sending the first three points in p_1, \ldots, p_n to $0, 1, \infty$ gives the tuple $p'_4, \ldots, p'_n \in \mathbb{P}^1 \{0, 1, \infty\}$ which determines the curve up to *n*-isomorphism.
- One can prove that

$$M_{0,n} = (\mathbb{P}^1 - \{0, 1, \infty\})^{n-3} - \{\text{diagonals}\}\$$

where one identifies the $n\mbox{-}\mbox{curve}$ with the p_i' (none of the p_i' can agree!)

The Universal family over $M_{0,n}$

The universal family is given by

$$U_n = M_{0,n} \times \mathbb{P}^1$$

$$\downarrow$$

$$M_{0,n}$$

where the sections come from the constant sections $0, 1, \infty$, and the sections s_i is given by

$$s_i : M_{0,n} \to U_n$$

$$(p'_4, \dots, p'_n) \times (p'_4, \dots, p'_n) \times p'_i$$

for i = 4, ..., n.

The Universal family over $M_{0,n}$

Example n = 4

 s_4 is the diagonal in $\mathbb{P}^1 \times \mathbb{P}^1$ minus the points $0 \times 0, 1 \times 1, \infty \times \infty$ which lie over the points in $\mathbb{P}^1 - M_{0,n}$.

• These $M_{0,n}$ are not compact, or proper, or projective.

- These $M_{0,n}$ are not compact, or proper, or projective.
- ► This is not good for considering degenerations. We want to compactify M_{0,n}.

- These $M_{0,n}$ are not compact, or proper, or projective.
- This is not good for considering degenerations. We want to compactify $M_{0.n}$.
- We would like a space in which if we have a family of *n*-curves in which $p_1 \rightarrow p_2$, then there is a well defined (and unique) limit curve.

- These $M_{0,n}$ are not compact, or proper, or projective.
- ► This is not good for considering degenerations. We want to compactify M_{0.n}.
- We would like a space in which if we have a family of *n*-curves in which $p_1 \rightarrow p_2$, then there is a well defined (and unique) limit curve.
- ► We need to find another property P' which includes n-curves but has more things to make everything work, including the existence of a fine moduli space.

- These $M_{0,n}$ are not compact, or proper, or projective.
- ► This is not good for considering degenerations. We want to compactify M_{0.n}.
- We would like a space in which if we have a family of *n*-curves in which $p_1 \rightarrow p_2$, then there is a well defined (and unique) limit curve.
- ► We need to find another property P' which includes n-curves but has more things to make everything work, including the existence of a fine moduli space.
- The answer: The concept of stable curves.

- These $M_{0,n}$ are not compact, or proper, or projective.
- ► This is not good for considering degenerations. We want to compactify M_{0.n}.
- We would like a space in which if we have a family of *n*-curves in which $p_1 \rightarrow p_2$, then there is a well defined (and unique) limit curve.
- ► We need to find another property P' which includes n-curves but has more things to make everything work, including the existence of a fine moduli space.
- The answer: The concept of stable curves.
- ► We first analyze the case n = 4 an see some motivation for the definition.

$\overline{M_{0,4}}$

Take $M_{0,4}$ and its universal family U_4

► The family is not defined at 0, 1, ∞ because p₄ can't be any of these.

$\overline{M_{0,4}}$

Take $M_{0,4}$ and its universal family U_4

- ► The family is not defined at 0, 1, ∞ because p₄ can't be any of these.
- One may think that the answer is to enlarge $M_{0,4}$ to \mathbb{P}^1 , and let the three extra curves it parametrizes be the ones above, where $p_1 = p_4$ above 0, $p_2 = p_4$ above 1 and $p_3 = p_4$ above ∞ .

▶ This, first of all is not symmetric (we don't have $p_1 \rightarrow p_2$ for example)

- ▶ This, first of all is not symmetric (we don't have $p_1 \rightarrow p_2$ for example)
- It also does not work!

Consider the families $C_t = (0, 1, \infty, t)$ and $D_t = (0, t^{-1}, \infty, 1)$ over \mathbb{A}^1_t .

For each $t \neq 0$, $C_t = D_t$ up to a 4-isomorphism as we saw before, and and so the families C_t and D_t for $t \neq 0$ give the same morphism from $\mathbb{A}_t^1 - \{0, 1\}$ to $M_{0,4}$.

Consider the families $C_t = (0, 1, \infty, t)$ and $D_t = (0, t^{-1}, \infty, 1)$ over \mathbb{A}^1_t .

▶ For each $t \neq 0$, $C_t = D_t$ up to a 4-isomorphism as we saw before, and and so the families C_t and D_t for $t \neq 0$ give the same morphism from $\mathbb{A}_t^1 - \{0, 1\}$ to $M_{0,4}$.

For
$$t = 0$$
, C_0 has $p_1 = p_4$ whereas D_0 has $p_2 = p_3$.

- For each $t \neq 0$, $C_t = D_t$ up to a 4-isomorphism as we saw before, and and so the families C_t and D_t for $t \neq 0$ give the same morphism from $\mathbb{A}^1_t - \{0, 1\}$ to $M_{0,4}$.
- For t = 0, C_0 has $p_1 = p_4$ whereas D_0 has $p_2 = p_3$.
- ► These configurations are not equivalent up to 4-isomorphism, and so should be considered as distinct points in our compactification of M_{0,4}.

- For each t ≠ 0, C_t = D_t up to a 4-isomorphism as we saw before, and and so the families C_t and D_t for t ≠ 0 give the same morphism from A¹_t - {0, 1} to M_{0,4}.
- For t = 0, C_0 has $p_1 = p_4$ whereas D_0 has $p_2 = p_3$.
- ► These configurations are not equivalent up to 4-isomorphism, and so should be considered as distinct points in our compactification of M_{0,4}.
- ▶ Thus, our map $\mathbb{A}^1_t \{0,1\} \to M_{0,4} \subset \mathbb{P}^1$ would need to extend in two different ways at t = 0!

- For each t ≠ 0, C_t = D_t up to a 4-isomorphism as we saw before, and and so the families C_t and D_t for t ≠ 0 give the same morphism from A¹_t - {0, 1} to M_{0,4}.
- For t = 0, C_0 has $p_1 = p_4$ whereas D_0 has $p_2 = p_3$.
- ► These configurations are not equivalent up to 4-isomorphism, and so should be considered as distinct points in our compactification of M_{0,4}.
- ▶ Thus, our map $\mathbb{A}^1_t \{0,1\} \to M_{0,4} \subset \mathbb{P}^1$ would need to extend in two different ways at t = 0!
- ► This at least hints at the fact that, whatever our space should be, it should identify the situations p₁ → p₄ and p₂ → p₃.

 $M_{0,4}$: The good way to compactify $M_{0,4}$ We have $U_4 \subset M_{0,4} \times \mathbb{P}^1 \subset \mathbb{P}^1 \times \mathbb{P}^1$

• Blow-up $\mathbb{P}^1 \times \mathbb{P}^1$ at the points $0 \times 0, 1 \times 1, \infty \times \infty$.

► This separates the sections and so we get a family of curves that extends to all of P¹ where all the fibers now have 4 distinct marked points.

 $\overline{M_{0,4}} = \mathbb{P}^1$

The three curves it parametrizes that are not smooth are shown in the picture. $\overline{M_{0,4}} = \mathbb{P}^1$

- The three curves it parametrizes that are not smooth are shown in the picture.
- ► The first curve corresponds to p₁ → p₄ or p₂ → p₃ (this brings the symmetry back!).

 $\overline{M_{0,4}} = \mathbb{P}^1$

- The three curves it parametrizes that are not smooth are shown in the picture.
- ► The first curve corresponds to p₁ → p₄ or p₂ → p₃ (this brings the symmetry back!).
- These 3 curves are unique up to 4-isomorphism! (any isomorphism must map the singularity to the singularity).
$\overline{M_{0,4}} = \mathbb{P}^1$

- The three curves it parametrizes that are not smooth are shown in the picture.
- ► The first curve corresponds to p₁ → p₄ or p₂ → p₃ (this brings the symmetry back!).
- These 3 curves are unique up to 4-isomorphism! (any isomorphism must map the singularity to the singularity).
- ► These 3 new curves have no nontrivial 4-automorphisms.

 $\overline{M_{0,4}} = \mathbb{P}^1$

- The three curves it parametrizes that are not smooth are shown in the picture.
- ► The first curve corresponds to p₁ → p₄ or p₂ → p₃ (this brings the symmetry back!).
- These 3 curves are unique up to 4-isomorphism! (any isomorphism must map the singularity to the singularity).
- ► These 3 new curves have no nontrivial 4-automorphisms.
- ► Instead of letting the points collide, the space M_{0,4} adds one more P¹ where it puts the points that tried to collide. This is the way it stores the information that the collided.

Ana-Maria's picture of the situation:

A stable genus zero n-curve is a curve with n marked points that has the following properties:

A stable genus zero n-curve is a curve with n marked points that has the following properties:

(picture taken from Renzo's notes)

It is connected.

A stable genus zero n-curve is a curve with n marked points that has the following properties:

- It is connected.
- ▶ Each irreducible component is isomorphic to \mathbb{P}^1 .

A stable genus zero n-curve is a curve with n marked points that has the following properties:

- It is connected.
- Each irreducible component is isomorphic to \mathbb{P}^1 .
- If two \mathbb{P}^1 's intersect, then they do so transversally.

A stable genus zero n-curve is a curve with n marked points that has the following properties:

- It is connected.
- Each irreducible component is isomorphic to \mathbb{P}^1 .
- If two \mathbb{P}^1 's intersect, then they do so transversally.
- The curve has (arithmetic) genus zero. This implies that there are no closed circuits.

A stable genus zero n-curve is a curve with n marked points that has the following properties:

- It is connected.
- ► Each irreducible component is isomorphic to \mathbb{P}^1 .
- If two \mathbb{P}^1 's intersect, then they do so transversally.
- The curve has (arithmetic) genus zero. This implies that there are no closed circuits.
- Each component has at least 3 special (singular or marked) points, and no marked point is singular.

Two stable curves are said to be n-isomorphic if there is an isomorphism preserving the markings.

- Two stable curves are said to be n-isomorphic if there is an isomorphism preserving the markings.
- This isomorphism necessarily preserves the singularities!

- Two stable curves are said to be n-isomorphic if there is an isomorphism preserving the markings.
- This isomorphism necessarily preserves the singularities!
- Stable *n*-curves have no automorphisms preserving the markings (no *n*-automorphisms).

There is a (fine) moduli space for stable *n*-curves for $n \ge 3!$ Moreover:

There is a (fine) moduli space for stable *n*-curves for $n \ge 3!$ Moreover:

• $\overline{M_{0,n}}$ is smooth, compact, and projective!

There is a (fine) moduli space for stable *n*-curves for $n \ge 3!$ Moreover:

- $\overline{M_{0,n}}$ is smooth, compact, and projective!
- $M_{0,n}$ is open in $\overline{M_{0,n}}$.

There is a (fine) moduli space for stable *n*-curves for $n \ge 3$! Moreover:

- $\overline{M_{0,n}}$ is smooth, compact, and projective!
- $M_{0,n}$ is open in $\overline{M_{0,n}}$.
- ► M_{0,n} M_{0,n} (closed) is a reducible divisor, and any two of its components intersect transversally.

There is a (fine) moduli space for stable *n*-curves for $n \ge 3$! Moreover:

- $\overline{M_{0,n}}$ is smooth, compact, and projective!
- $M_{0,n}$ is open in $\overline{M_{0,n}}$.
- ► M_{0,n} M_{0,n} (closed) is a reducible divisor, and any two of its components intersect transversally.
- ► The universal family $\overline{U_n}$ is $\overline{M_{0,n+1}}$! (more details on this later).

There is a (fine) moduli space for stable *n*-curves for $n \ge 3$! Moreover:

- $\overline{M_{0,n}}$ is smooth, compact, and projective!
- $M_{0,n}$ is open in $\overline{M_{0,n}}$.
- ► M_{0,n} M_{0,n} (closed) is a reducible divisor, and any two of its components intersect transversally.
- ▶ The universal family $\overline{U_n}$ is $\overline{M_{0,n+1}}$! (more details on this later).

Some History

It was first constructed by Knudsen in 1983. One of the highlights of modern algebraic geometry.

Take a point $p \in \overline{U_4}$ (we will find a stable 5-curve is corresponds to).

Take a point $p \in \overline{U_4}$ (we will find a stable 5-curve is corresponds to).

▶ p is in some fiber of the map, say above q.

Take a point $p \in \overline{U_4}$ (we will find a stable 5-curve is corresponds to).

- ▶ p is in some fiber of the map, say above q.
- If it is not in one of the sections, and not one of the singular points of the special fibers, then the stable 5-curve it corresponds to is the fiber with the marked points (σ₁(q),...,σ₄(q), p = p₅).

Take a point $p \in \overline{U_4}$ (we will find a stable 5-curve is corresponds to).

- ▶ p is in some fiber of the map, say above q.
- If it is not in one of the sections, and not one of the singular points of the special fibers, then the stable 5-curve it corresponds to is the fiber with the marked points (σ₁(q),...,σ₄(q), p = p₅).
- Otherwise we need to stabilize the curve.

Stabilization

If p is not in one of the sections, but it is a singular point of one of the special ones, then replace the singular point by a P¹ and place p = p₅ in this new P¹.

Stabilization

If p is in one of the sections, say σ₄ then take the fiber and add a P¹ at σ₄(q) and put p₄ and p₅ on this new P¹ (this is unique up to isomorphism).

This takes care of all isomorphism classes of 5-curves!

References

► Kapranov:

- "Veronese curves and Grothendieck-Knudsen moduli space M(0,n)", Journal of Algebraic Geometry, 1993.
- "Chow quotient of Grassmannians I", Adv. Soviet Math.
- Ana-Maria Castravet: Course, and course notes available online, "Topics in Geometry and Topology (Moduli of curves)", Spring 2010.
- Renzo Cavalieri: Course notes available online, "Math 676 Topics: Moduli Spaces", Fall 2010.