$M_{0,n}$ Part I

Enrique Acosta

Department of Mathematics University of Arizona

October 2011

(Fine) Moduli Space of Curves

Let P be a property that curves may satisfy.

(Fine) Moduli Space of Curves

Let P be a property that curves may satisfy.

Family of Curves

 X, B varieties (or schemes), and a morphism

 $\pi: X \to B$

so that the fibers of this map are all P-curves, and π is compatible with the P-structure.

(Fine) Moduli Space of Curves

Let P be a property that curves may satisfy.

Family of Curves

 X, B varieties (or schemes), and a morphism

 $\pi: X \to B$

so that the fibers of this map are all P-curves, and π is compatible with the P-structure.

Example

If P says the curve has only one singularity, then a family $X \to B$ should come with a morphism $s: B \to X$ (a section) that tell us which is the singular point on the fiber.

Equivalence of Families of P-Curves

We say that $X \to B$, $Y \to B$ are equivalent families of P-curves if there is an isomorphism $X \to Y$ making the diagram commute

and that preserves all the extra structure that P imposes (this needs to be specified precisely and depends on P).

Equivalence of Families of P-Curves

We say that $X \to B$, $Y \to B$ are equivalent families of P-curves if there is an isomorphism $X \to Y$ making the diagram commute

and that preserves all the extra structure that P imposes (this needs to be specified precisely and depends on P).

Example

If P says there is a unique singular point, then it is natural to require that the map $X \to Y$ should be taking the singular points in the fiber to the corresponding singular points in the other fiber.

Equivalence of P-curves

- \triangleright The notion of equivalence of families includes the notion of equivalence of P-curves since we can take $B = \{ \bullet \}.$
- \triangleright We call this a P-isomorphism.

Is a variety (scheme, orbifold, stack) M_P such that:

 \blacktriangleright The points of \mathcal{M}_P are in bijection with P-isomorphism classes of P-curves.

- \blacktriangleright The points of M_P are in bijection with P-isomorphism classes of P-curves.
- **►** The morphisms $B \to M_P$ are in bijection with the collection of equivalence classes of families of P curves.

- \blacktriangleright The points of M_P are in bijection with P-isomorphism classes of P-curves.
- **►** The morphisms $B \to M_P$ are in bijection with the collection of equivalence classes of families of P curves.
- \blacktriangleright These identifications are as nice as possible (read: functorially). This means precisely that:

- \blacktriangleright The points of M_P are in bijection with P-isomorphism classes of P-curves.
- **►** The morphisms $B \to M_P$ are in bijection with the collection of equivalence classes of families of P curves.
- \blacktriangleright These identifications are as nice as possible (read: functorially). This means precisely that:
	- \blacktriangleright The identification sending a scheme B to the collection of equivalence classes of families of P -curves over B is a functor.

- \blacktriangleright The points of M_P are in bijection with P-isomorphism classes of P-curves.
- **►** The morphisms $B \to M_P$ are in bijection with the collection of equivalence classes of families of P curves.
- \triangleright These identifications are as nice as possible (read: functorially). This means precisely that:
	- \blacktriangleright The identification sending a scheme B to the collection of equivalence classes of families of P -curves over B is a functor.
	- **Fig.** This functor is isomorphic to Hom $(-, M_P)$.

As an example, take a curve C in M_P .

Each point in C corresponds to a P-curve (up to P-iso).

As an example, take a curve C in \mathcal{M}_P .

- Each point in C corresponds to a P-curve (up to P-iso).
- As you move the point along C the curve is gradually changing.

As an example, take a curve C in M_P .

- Each point in C corresponds to a P-curve (up to P-iso).
- As you move the point along C the curve is gradually changing.
- \triangleright There is in general no good reason to expect to be able to glue all these curves into a surface,

As an example, take a curve C in \mathcal{M}_P .

- Each point in C corresponds to a P-curve (up to P-iso).
- As you move the point along C the curve is gradually changing.
- \triangleright There is in general no good reason to expect to be able to glue all these curves into a surface, but in this case the properties of M_P imply the existence of this surface!

As an example, take a curve C in \mathcal{M}_P .

- Each point in C corresponds to a P-curve (up to P-iso).
- As you move the point along C the curve is gradually changing.
- \triangleright There is in general no good reason to expect to be able to glue all these curves into a surface, but in this case the properties of M_P imply the existence of this surface!
- ► The simple inclusion $C \hookrightarrow M_P$ gives automatically a family $X \to C$ with X_p (fiber above p) equal to the P-curve that it corresponds to.

The Universal Family

► The identity map $id : \mathcal{M}_P \to \mathcal{M}_P$ gives a family $U \to \mathcal{M}_P$ which is called the universal family.

The Universal Family

- \blacktriangleright The identity map $id : \mathcal{M}_P \to \mathcal{M}_P$ gives a family $U \to \mathcal{M}_P$ which is called the universal family.
- ► The fiber U_p above the point $p \in \mathcal{M}_P$ is precisely the P -curve that p represents up to P -isomorphism (by functorial arguments).

The Universal Family

- \blacktriangleright The identity map $id : \mathcal{M}_P \to \mathcal{M}_P$ gives a family $U \to \mathcal{M}_P$ which is called the universal family.
- ► The fiber U_p above the point $p \in \mathcal{M}_P$ is precisely the P -curve that p represents up to P -isomorphism (by functorial arguments).
- \blacktriangleright Moreover, since any family $X \to B$ gives a map $B \to \mathcal{M}_P$. then functorial arguments show that $X \to B$ is the pullback of the family $U \to \mathcal{M}_P$.

The Universal Family

- \blacktriangleright The identity map $id : \mathcal{M}_P \to \mathcal{M}_P$ gives a family $U \to \mathcal{M}_P$ which is called the universal family.
- ► The fiber U_p above the point $p \in \mathcal{M}_P$ is precisely the P -curve that p represents up to P -isomorphism (by functorial arguments).
- \blacktriangleright Moreover, since any family $X \to B$ gives a map $B \to \mathcal{M}_P$. then functorial arguments show that $X \to B$ is the pullback of the family $U \to \mathcal{M}_P$.
- \blacktriangleright This is why U is called the universal family!

 \blacktriangleright The property P here is being a line in k^{n+1} .

- \blacktriangleright The property P here is being a line in k^{n+1} .
- \blacktriangleright A family here is

where the fiber X_b corresponds under the horizontal map to $b \times L_b$ where L_b is a line through the origin.

- \blacktriangleright The property P here is being a line in k^{n+1} .
- \blacktriangleright A family here is

where the fiber X_b corresponds under the horizontal map to $b \times L_b$ where L_b is a line through the origin.

► Two families $X_1 \rightarrow B$ and $X_2 \rightarrow B$ are said to be equivalent if there is an isomorphism $X_1 \to X_2$ which preserves the fibers together with their identification as lines in k^{n+1} coming from the structure map.

- \blacktriangleright The property P here is being a line in k^{n+1} .
- \blacktriangleright A family here is

where the fiber X_b corresponds under the horizontal map to $b \times L_b$ where L_b is a line through the origin.

- ► Two families $X_1 \rightarrow B$ and $X_2 \rightarrow B$ are said to be equivalent if there is an isomorphism $X_1 \to X_2$ which preserves the fibers together with their identification as lines in k^{n+1} coming from the structure map.
- \blacktriangleright The universal family in this case is $U = \{ [l] \times x \mid x \in l \} \subset \mathbb{P}^n \times k^{n+1}.$

The ingredients here are:

 \triangleright P: Smooth genus zero curve with n distinct marked points.

The ingredients here are:

- \blacktriangleright P: Smooth genus zero curve with n distinct marked points.
- \triangleright We will call a P-curve and *n*-curve.

The ingredients here are:

- \blacktriangleright P: Smooth genus zero curve with n distinct marked points.
- \triangleright We will call a P-curve and *n*-curve.
- ► Family: $X \to B$ with X_b a genus zero curve for all $b \in B$ and n disjoint sections $s_1, \ldots, s_n : B \to X$ which give you the distinct n marked points on X_h .

The ingredients here are:

- \blacktriangleright P: Smooth genus zero curve with n distinct marked points.
- \triangleright We will call a P-curve and *n*-curve.
- ► Family: $X \to B$ with X_b a genus zero curve for all $b \in B$ and *n* disjoint sections $s_1, \ldots, s_n : B \to X$ which give you the distinct n marked points on X_h .
- ► Equivalence of families is given by isomorphisms $X_1 \rightarrow X_2$ that preserve fibers and send sections to sections.

 \blacktriangleright There is no moduli space for $n = 0, 1, 2$.

- \blacktriangleright There is no moduli space for $n = 0, 1, 2$.
- \triangleright This has to do with the fact that genus zero curves have lots of automorphisms.

- \blacktriangleright There is no moduli space for $n = 0, 1, 2$.
- \triangleright This has to do with the fact that genus zero curves have lots of automorphisms.
- \blacktriangleright Fixing $n < 2$ points does not remove enough automorphisms (there are infinitely automorphisms of \mathbb{P}^1 sending two fixed points to $0,1$, but the is a unique automorphism of \mathbb{P}^1 sending any three points to $0, 1, \infty$).

- \blacktriangleright There is no moduli space for $n = 0, 1, 2$.
- \triangleright This has to do with the fact that genus zero curves have lots of automorphisms.
- \blacktriangleright Fixing $n < 2$ points does not remove enough automorphisms (there are infinitely automorphisms of \mathbb{P}^1 sending two fixed points to $0,1$, but the is a unique automorphism of \mathbb{P}^1 sending any three points to $(0, 1, \infty)$.
- ▶ There is a (fine) moduli space for $n \geq 3!$ We call it $M_{0,n}$.

$M_{0,3}$

 $M_{0,3} = \{ \bullet \}$ since there is only one equivalence class of smooth genus zero curves up to 3-isomorphism.
$M_{0.4}$

Any smooth C curve genus zero curve with 4 fixed points p_1, \ldots, p_4 is isomorphic as a 4-curve to a unique $(\mathbb{P}^1, 0, 1, \infty, p'_4).$

$\rm M_{0.4}$

- Any smooth C curve genus zero curve with 4 fixed points p_1, \ldots, p_4 is isomorphic as a 4-curve to a unique $(\mathbb{P}^1, 0, 1, \infty, p'_4).$
- $\blacktriangleright \; p'_4 \in \mathbb{P}^1 \{ 0, 1, \infty \},$ and it determines the isomorphism class of the 4-curve.

$M_{0.4}$

- Any smooth C curve genus zero curve with 4 fixed points p_1, \ldots, p_4 is isomorphic as a 4-curve to a unique $(\mathbb{P}^1, 0, 1, \infty, p'_4).$
- $\blacktriangleright \; p'_4 \in \mathbb{P}^1 \{ 0, 1, \infty \},$ and it determines the isomorphism class of the 4-curve.
- If the curve was explicitly \mathbb{P}^1 at the beginning, then one can show that p_4^\prime is actually the cross-ratio of the points $p_1, p_2, p_3, p_4.$

$M_{0,4}$

- Any smooth C curve genus zero curve with 4 fixed points p_1, \ldots, p_4 is isomorphic as a 4-curve to a unique $(\mathbb{P}^1, 0, 1, \infty, p'_4).$
- $\blacktriangleright \; p'_4 \in \mathbb{P}^1 \{ 0, 1, \infty \},$ and it determines the isomorphism class of the 4-curve.
- If the curve was explicitly \mathbb{P}^1 at the beginning, then one can show that p_4^\prime is actually the cross-ratio of the points $p_1, p_2, p_3, p_4.$
- \triangleright We have

$$
M_{0,4} = \mathbb{P}^1 - \{0, 1, \infty\}
$$

$\rm M_{0.4}$

- Any smooth C curve genus zero curve with 4 fixed points p_1, \ldots, p_4 is isomorphic as a 4-curve to a unique $(\mathbb{P}^1, 0, 1, \infty, p'_4).$
- $\blacktriangleright \; p'_4 \in \mathbb{P}^1 \{ 0, 1, \infty \},$ and it determines the isomorphism class of the 4-curve.
- If the curve was explicitly \mathbb{P}^1 at the beginning, then one can show that p_4^\prime is actually the cross-ratio of the points $p_1, p_2, p_3, p_4.$
- \triangleright We have

$$
M_{0,4} = \mathbb{P}^1 - \{0, 1, \infty\}
$$

(this needs to be checked!)

Example (Renzo's)

► Consider the family of 4-curves $C_t = (\mathbb{P}^1, 0, 1, \infty, t)$ over $\mathbb{A}^1 - \{0,1\}$ (it does not extend to a family of 4-curves over 0 or 1 because two points would agree).

Example (Renzo's)

- ► Consider the family of 4-curves $C_t = (\mathbb{P}^1, 0, 1, \infty, t)$ over $\mathbb{A}^1 - \{0,1\}$ (it does not extend to a family of 4-curves over 0 or 1 because two points would agree).
- Explicitly, the family given by

$$
\mathbb{P}^1 \times (\mathbb{A}^1 - \{0, 1\}) \rightarrow \mathbb{A}^1 - \{0, 1\}
$$

$$
p \times t \rightarrow t
$$

with the three constant sections $0, 1, \infty$ and the section $t \mapsto t \times t$.

Example (Renzo's)

- ► Consider the family of 4-curves $C_t = (\mathbb{P}^1, 0, 1, \infty, t)$ over $\mathbb{A}^1 - \{0,1\}$ (it does not extend to a family of 4-curves over 0 or 1 because two points would agree).
- Explicitly, the family given by

$$
\mathbb{P}^1 \times (\mathbb{A}^1 - \{0, 1\}) \rightarrow \mathbb{A}^1 - \{0, 1\}
$$

$$
p \times t \rightarrow t
$$

with the three constant sections $0, 1, \infty$ and the section $t \mapsto t \times t$.

Since $M_{0,4}$ is a fine moduli space, then this family gives a morphism

$$
\mathbb{A}^1 - \{0, 1\} \to M_{0, 4}
$$

- $C_t = (\mathbb{P}^1, 0, 1, \infty, t)$
	- ► Now $D_t = (0, t^{-1}, \infty, 1)$ is another family over $\mathbb{A}^1 \{0, 1\}$ and so gives another morphism

$$
\mathbb{A}^1 - \{0, 1\} \to M_{0, 4}
$$

- $C_t = (\mathbb{P}^1, 0, 1, \infty, t)$
	- ► Now $D_t = (0, t^{-1}, \infty, 1)$ is another family over $\mathbb{A}^1 \{0, 1\}$ and so gives another morphism

$$
\mathbb{A}^1 - \{0, 1\} \to M_{0, 4}
$$

But for each $t \neq 0$, $C_t = D_t$ up to a 4-isomorphism since the map sending

$$
\begin{array}{rcl} D_t & \to & C_t \\ p & \mapsto & tp \end{array}
$$

is a 4-isomorphism.

- $C_t = (\mathbb{P}^1, 0, 1, \infty, t)$
	- ► Now $D_t = (0, t^{-1}, \infty, 1)$ is another family over $\mathbb{A}^1 \{0, 1\}$ and so gives another morphism

$$
\mathbb{A}^1 - \{0, 1\} \to M_{0, 4}
$$

But for each $t \neq 0$, $C_t = D_t$ up to a 4-isomorphism since the map sending

$$
\begin{array}{rcl}D_t & \to & C_t \\ p & \mapsto & tp \end{array}
$$

is a 4-isomorphism.

In This implies that the families C_t and D_t for $t \neq 0$ give the same morphism from $\mathbb{A}^1_t-\{0,1\}$ to $M_{0,4}.$

$M_{0,n}$ for $n \geq 3$

In general, sending the first three points in p_1, \ldots, p_n to $0, 1, \infty$ gives the tuple $p'_4, \ldots, p'_n \in \mathbb{P}^1 - \{0, 1, \infty\}$ which determines the curve up to n -isomorphism.

$M_{0,n}$ for $n \geq 3$

- In general, sending the first three points in p_1, \ldots, p_n to $0, 1, \infty$ gives the tuple $p'_4, \ldots, p'_n \in \mathbb{P}^1 - \{0, 1, \infty\}$ which determines the curve up to n -isomorphism.
- \triangleright One can prove that

$$
M_{0,n} = (\mathbb{P}^1 - \{0, 1, \infty\})^{n-3} - \{\text{diagonals}\}\
$$

where one identifies the n -curve with the p_i^{\prime} (none of the p_i^{\prime} can agree!)

The Universal family over $M_{0,n}$

The universal family is given by

$$
U_n = M_{0,n} \times \mathbb{P}^1
$$

\n
$$
\downarrow
$$

\n
$$
M_{0,n}
$$

where the sections come from the constant sections $0, 1, \infty$, and the sections s_i is given by

$$
s_i: M_{0,n} \rightarrow U_n
$$

\n
$$
(p'_4, \ldots, p'_n) \times (p'_4, \ldots, p'_n) \times p'_i
$$

for $i = 4, \ldots, n$.

The Universal family over $M_{0,n}$

Example $n = 4$

 s_4 is the diagonal in $\mathbb{P}^1 \times \mathbb{P}^1$ minus the points $0 \times 0, 1 \times 1, \infty \times \infty$ which lie over the points in $\mathbb{P}^1 - M_{0,n}.$

 \blacktriangleright These $M_{0,n}$ are not compact, or proper, or projective.

- \blacktriangleright These $M_{0,n}$ are not compact, or proper, or projective.
- \blacktriangleright This is not good for considering degenerations. We want to compactify $M_{0,n}$.

- \blacktriangleright These $M_{0,n}$ are not compact, or proper, or projective.
- \triangleright This is not good for considering degenerations. We want to compactify $M_{0,n}$.
- \triangleright We would like a space in which if we have a family of *n*-curves in which $p_1 \rightarrow p_2$, then there is a well defined (and unique) limit curve.

- \blacktriangleright These $M_{0,n}$ are not compact, or proper, or projective.
- \triangleright This is not good for considering degenerations. We want to compactify $M_{0,n}$.
- \triangleright We would like a space in which if we have a family of *n*-curves in which $p_1 \rightarrow p_2$, then there is a well defined (and unique) limit curve.
- \blacktriangleright We need to find another property P' which includes n-curves but has more things to make everything work, including the existence of a fine moduli space.

- \blacktriangleright These $M_{0,n}$ are not compact, or proper, or projective.
- \triangleright This is not good for considering degenerations. We want to compactify $M_{0,n}$.
- \triangleright We would like a space in which if we have a family of *n*-curves in which $p_1 \rightarrow p_2$, then there is a well defined (and unique) limit curve.
- \blacktriangleright We need to find another property P' which includes n-curves but has more things to make everything work, including the existence of a fine moduli space.
- \blacktriangleright The answer: The concept of stable curves.

- \blacktriangleright These $M_{0,n}$ are not compact, or proper, or projective.
- \blacktriangleright This is not good for considering degenerations. We want to compactify $M_{0,n}$.
- \triangleright We would like a space in which if we have a family of *n*-curves in which $p_1 \rightarrow p_2$, then there is a well defined (and unique) limit curve.
- \blacktriangleright We need to find another property P' which includes n-curves but has more things to make everything work, including the existence of a fine moduli space.
- \blacktriangleright The answer: The concept of stable curves.
- \blacktriangleright We first analyze the case $n=4$ an see some motivation for the definition.

 $\overline{M}_{0,4}$

Take $M_{0,4}$ and its universal family U_4

 1.5_c ► The family is not defined at $0, 1, \infty$ because p_4 can't be any of these.

 $M_{0,4}$

Take $M_{0,4}$ and its universal family U_4

- 1.5_c ► The family is not defined at $0, 1, \infty$ because p_4 can't be any of these.
- \blacktriangleright One may think that the answer is to enlarge $M_{0,4}$ to \mathbb{P}^1 , and let the three extra curves it parametrizes be the ones above, where $p_1 = p_4$ above $0, \, p_2 = p_4$ above 1 and $p_3 = p_4$ above ∞.

example) is in the component isomorphic to 1.2 ▶ This, first of all is not symmetric (we don't have $p_1 \rightarrow p_2$ for

- example) is in the component isomorphic to 1.2 ▶ This, first of all is not symmetric (we don't have $p_1 \rightarrow p_2$ for
- \blacktriangleright It also does not work!

Consider the families $C_t = (0, 1, \infty, t)$ and $D_t = (0, t^{-1}, \infty, 1)$ over \mathbb{A}_t^1 .

For each $t \neq 0$, $C_t = D_t$ up to a 4-isomorphism as we saw before, and and so the families C_t and D_t for $t \neq 0$ give the same morphism from $\mathbb{A}^1_t-\{0,1\}$ to $M_{0,4}.$

Consider the families $C_t = (0, 1, \infty, t)$ and $D_t = (0, t^{-1}, \infty, 1)$ over \mathbb{A}_t^1 .

For each $t \neq 0$, $C_t = D_t$ up to a 4-isomorphism as we saw before, and and so the families C_t and D_t for $t \neq 0$ give the same morphism from $\mathbb{A}^1_t-\{0,1\}$ to $M_{0,4}.$

For
$$
t = 0
$$
, C_0 has $p_1 = p_4$ whereas D_0 has $p_2 = p_3$.

- For each $t \neq 0$, $C_t = D_t$ up to a 4-isomorphism as we saw before, and and so the families C_t and D_t for $t \neq 0$ give the same morphism from $\mathbb{A}^1_t-\{0,1\}$ to $M_{0,4}.$
- For $t = 0$, C_0 has $p_1 = p_4$ whereas D_0 has $p_2 = p_3$.
- \triangleright These configurations are not equivalent up to 4-isomorphism, and so should be considered as distinct points in our compactification of $M_{0,4}$.

- For each $t \neq 0$, $C_t = D_t$ up to a 4-isomorphism as we saw before, and and so the families C_t and D_t for $t \neq 0$ give the same morphism from $\mathbb{A}^1_t-\{0,1\}$ to $M_{0,4}.$
- For $t = 0$, C_0 has $p_1 = p_4$ whereas D_0 has $p_2 = p_3$.
- \triangleright These configurations are not equivalent up to 4-isomorphism, and so should be considered as distinct points in our compactification of $M_{0,4}$.
- ► Thus, our map $\mathbb{A}_t^1 \{0,1\} \to M_{0,4} \subset \mathbb{P}^1$ would need to extend in two different ways at $t = 0!$

- For each $t \neq 0$, $C_t = D_t$ up to a 4-isomorphism as we saw before, and and so the families C_t and D_t for $t \neq 0$ give the same morphism from $\mathbb{A}^1_t-\{0,1\}$ to $M_{0,4}.$
- For $t = 0$, C_0 has $p_1 = p_4$ whereas D_0 has $p_2 = p_3$.
- \triangleright These configurations are not equivalent up to 4-isomorphism, and so should be considered as distinct points in our compactification of $M_{0,4}$.
- ► Thus, our map $\mathbb{A}_t^1 \{0,1\} \to M_{0,4} \subset \mathbb{P}^1$ would need to extend in two different ways at $t = 0!$
- \triangleright This at least hints at the fact that, whatever our space should be, it should identify the situations $p_1 \rightarrow p_4$ and $p_2 \rightarrow p_3$.

 $M_{0,4}$: The good way to compactify $M_{0,4}$ We have $U_4\subset M_{0,4}\times \mathbb{P}^1\subset \mathbb{P}^1\times \mathbb{P}^1$

► Blow-up $\mathbb{P}^1 \times \mathbb{P}^1$ at the points $0 \times 0, 1 \times 1, \infty \times \infty$.

 \blacktriangleright This separates the sections and so we get a family of curves that extends to all of \mathbb{P}^1 where all the fibers now have 4 distinct marked points. i.e., i.e

 $\overline{M_{0,4}} = \mathbb{P}^1$

 \blacktriangleright The three curves it parametrizes that are not smooth are shown in the picture.

 $\overline{M_{0,4}} = \mathbb{P}^1$

- \blacktriangleright The three curves it parametrizes that are not smooth are shown in the picture.
- ▶ The first curve corresponds to $p_1 \rightarrow p_4$ or $p_2 \rightarrow p_3$ (this brings the symmetry back!).

 $\overline{M_{0,4}} = \mathbb{P}^1$

- \blacktriangleright The three curves it parametrizes that are not smooth are shown in the picture.
- \triangleright The first curve corresponds to $p_1 \rightarrow p_4$ or $p_2 \rightarrow p_3$ (this brings the symmetry back!).
- \triangleright These 3 curves are unique up to 4-isomorphism! (any isomorphism must map the singularity to the singularity).
$\overline{M_{0,4}} = \mathbb{P}^1$

- \blacktriangleright The three curves it parametrizes that are not smooth are shown in the picture.
- ▶ The first curve corresponds to $p_1 \rightarrow p_4$ or $p_2 \rightarrow p_3$ (this brings the symmetry back!).
- \triangleright These 3 curves are unique up to 4-isomorphism! (any isomorphism must map the singularity to the singularity).
- \blacktriangleright These 3 new curves have no nontrivial 4-automorphisms.

 $\overline{M_{0,4}} = \mathbb{P}^1$

- \blacktriangleright The three curves it parametrizes that are not smooth are shown in the picture.
- \triangleright The first curve corresponds to $p_1 \rightarrow p_4$ or $p_2 \rightarrow p_3$ (this brings the symmetry back!).
- \triangleright These 3 curves are unique up to 4-isomorphism! (any isomorphism must map the singularity to the singularity).
- \blacktriangleright These 3 new curves have no nontrivial 4-automorphisms.
- Instead of letting the points collide, the space $M_{0,4}$ adds one more \mathbb{P}^1 where it puts the points that tried to collide. This is the way it stores the information that the collided.

Ana-Maria's picture of the situation:

A stable genus zero n -curve is a curve with n marked points that has the following properties: often draw a marked tree as in fig. 2, where α in fig.

A stable genus zero n -curve is a curve with n marked points that has the following properties: often draw a marked tree as in fig. 2, where α in fig.

(picture taken from Renzo's notes)

It is connected.

Stable genus zero *n*-pointed curves (stable *n*-curves)

A stable genus zero n -curve is a curve with n marked points that has the following properties: μ as zero *to* carve is a carve with to marked point often draw a marked tree as in fig. 2, where α in fig.

- \mathcal{D} marked tree is stable if every twist twist three special tree special terms of \mathcal{D} \blacktriangleright It is connected.
- Each irreducible component is isomorphic to \mathbb{P}^1 .

A stable genus zero n -curve is a curve with n marked points that has the following properties: often draw a marked tree as in fig. 2, where α in fig.

- \mathcal{D} marked tree is stable if every twist twist three special tree special terms of \mathcal{D} \blacktriangleright It is connected.
- Each irreducible component is isomorphic to \mathbb{P}^1 .
- T stability condition is equivalent to the existence of no non-trivialent to the existence of no non-trivial T If two \mathbb{P}^1 's intersect, then they do so transversally.

A stable genus zero n -curve is a curve with n marked points that has the following properties: often draw a marked tree as in fig. 2, where α in fig.

- \mathcal{D} marked tree is stable if every twist twist three special tree special terms of \mathcal{D} \blacktriangleright It is connected.
- Each irreducible component is isomorphic to \mathbb{P}^1 .
- T stability condition is equivalent to the existence of no non-trivialent to the existence of no non-trivial T If two \mathbb{P}^1 's intersect, then they do so transversally.
- \blacktriangleright The curve has (arithmetic) genus zero. This implies that there are no closed circuits.

A stable genus zero n -curve is a curve with n marked points that has the following properties: often draw a marked tree as in fig. 2, where α in fig.

- \mathcal{D} marked tree is stable if every twist twist three special tree special terms of \mathcal{D} \blacktriangleright It is connected.
- Each irreducible component is isomorphic to \mathbb{P}^1 .
- T stability condition is equivalent to the existence of no non-trivialent to the existence of no non-trivial T If two \mathbb{P}^1 's intersect, then they do so transversally.
- \blacktriangleright The curve has (arithmetic) genus zero. This implies that there are no closed circuits.
- \triangleright Each component has at least 3 special (singular or marked) points, and no marked point is singular.

 \blacktriangleright Two stable curves are said to be *n*-isomorphic if there is an isomorphism preserving the markings.

- \blacktriangleright Two stable curves are said to be *n*-isomorphic if there is an isomorphism preserving the markings.
- \triangleright This isomorphism necessarily preserves the singularities!
- \blacktriangleright Two stable curves are said to be *n*-isomorphic if there is an isomorphism preserving the markings.
- \triangleright This isomorphism necessarily preserves the singularities!
- \triangleright Stable *n*-curves have no automorphisms preserving the markings (no n -automorphisms).

The Moduli Space $\overline{M_{0,n}}$

The Moduli Space $\overline{M_{0,n}}$

There is a (fine) moduli space for stable *n*-curves for $n \geq 3!$ Moreover:

 $\blacktriangleright \overline{M_{0,n}}$ is smooth, compact, and projective!

- $\blacktriangleright \overline{M_{0,n}}$ is smooth, compact, and projective!
- $\blacktriangleright M_{0,n}$ is open in $\overline{M_{0,n}}$.

- $\blacktriangleright \overline{M_{0,n}}$ is smooth, compact, and projective!
- $\blacktriangleright M_{0,n}$ is open in $\overline{M_{0,n}}$.
- $\blacktriangleright \overline{M_{0,n}} M_{0,n}$ (closed) is a reducible divisor, and any two of its components intersect transversally.

- $\blacktriangleright \overline{M_{0,n}}$ is smooth, compact, and projective!
- $\blacktriangleright M_{0,n}$ is open in $\overline{M_{0,n}}$.
- $\blacktriangleright \overline{M_{0,n}} M_{0,n}$ (closed) is a reducible divisor, and any two of its components intersect transversally.
- \blacktriangleright The universal family $\overline{U_n}$ is $\overline{M_{0,n+1}}$! (more details on this later).

There is a (fine) moduli space for stable *n*-curves for $n \geq 3!$ Moreover:

- $\blacktriangleright \overline{M_{0,n}}$ is smooth, compact, and projective!
- $\blacktriangleright M_{0,n}$ is open in $\overline{M_{0,n}}$.
- $\blacktriangleright \overline{M_{0,n}} M_{0,n}$ (closed) is a reducible divisor, and any two of its components intersect transversally.
- \blacktriangleright The universal family $\overline{U_n}$ is $\overline{M_{0,n+1}}$! (more details on this later).

Some History

It was first constructed by Knudsen in 1983. One of the highlights of modern algebraic geometry.

Example: The universal family $\overline{U_4}$ is $\overline{M_{0.5}}$!

Take a point $p \in \overline{U_4}$ (we will find a stable 5-curve is corresponds to).

Example: The universal family $\overline{U_4}$ is $\overline{M_{0.5}}$!

Take a point $p \in \overline{U_4}$ (we will find a stable 5-curve is corresponds to).

 \blacktriangleright p is in some fiber of the map, say above q.

Example: The universal family U_4 is $M_{0.5}$!

Take a point $p \in U_4$ (we will find a stable 5-curve is corresponds to).

- \blacktriangleright p is in some fiber of the map, say above q.
- If it is not in one of the sections, and not one of the singular points of the special fibers, then the stable 5-curve it corresponds to is the fiber with the marked points $(\sigma_1(q), \ldots, \sigma_4(q), p = p_5).$

Example: The universal family U_4 is $M_{0.5}$!

Take a point $p \in U_4$ (we will find a stable 5-curve is corresponds to).

- \blacktriangleright p is in some fiber of the map, say above q.
- If it is not in one of the sections, and not one of the singular points of the special fibers, then the stable 5-curve it corresponds to is the fiber with the marked points $(\sigma_1(q), \ldots, \sigma_4(q), p = p_5).$
- Otherwise we need to *stabilize* the curve.

Example: The universal family $\overline{U_4}$ is $\overline{M_{0.5}}$!

Stabilization

If p is not in one of the sections, but it is a singular point of one of the special ones, then replace the singular point by a \mathbb{P}^1 and place $p=p_5$ in this new $\mathbb{P}^1.$

Stabilization

If p is in one of the sections, say σ_4 then take the fiber and add a \mathbb{P}^1 at $\sigma_4(q)$ and put p_4 and p_5 on this new \mathbb{P}^1 (this is unique up to isomorphism).

This takes care of all isomorphism classes of 5-curves!

References

\blacktriangleright Kapranov:

- ▶ "Veronese curves and Grothendieck-Knudsen moduli space M(0,n)", Journal of Algebraic Geometry, 1993.
- \blacktriangleright "Chow quotient of Grassmannians I", Adv. Soviet Math.
- \triangleright Ana-Maria Castravet: Course, and course notes available online, "Topics in Geometry and Topology (Moduli of curves)", Spring 2010.
- \triangleright Renzo Cavalieri: Course notes available online, "Math 676 Topics: Moduli Spaces", Fall 2010.