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Stable genus zero n-pointed curves (stable n-curves)

A stable genus zero n-curve is a curve with n marked points that
has the following properties:
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Figure 1: first attempt at compactifying U4

1. Each irreducible component is isomorphic to 1.

2. The points of intersection of the components are ordinary double points.

3. There are no closed circuits, i.e., if a node is removed then the curve
becomes disconnected.

These three properties are equivalent to saying that the curve has arith-
metic genus zero. Each irreducible component will be called a twig. We will
often draw a marked tree as in fig 2, where each line represents a twig.

Figure 2: stable marked trees.

Definition 7. A marked tree is stable if every twig has at least three special
points (marks or nodes).

This stability condition is equivalent to the existence of no nontrivial
automorphisms of the tree that fix all of the marks.

25

I It is connected.

I Each irreducible component is isomorphic to P1.

I If two P1’s intersect, then they do so transversally.

I The curve has (arithmetic) genus zero. This implies that there
are no closed circuits.

I Each component has at least 3 special (singular or marked)
points, and no marked point is singular.



Stable genus zero n-pointed curves (stable n-curves)

A stable genus zero n-curve is a curve with n marked points that
has the following properties:

0

1

(0,0)

(1,1)

( ),

4

3

2

1

0 1
M

U4

0,4

1PI

Figure 1: first attempt at compactifying U4

1. Each irreducible component is isomorphic to 1.

2. The points of intersection of the components are ordinary double points.

3. There are no closed circuits, i.e., if a node is removed then the curve
becomes disconnected.

These three properties are equivalent to saying that the curve has arith-
metic genus zero. Each irreducible component will be called a twig. We will
often draw a marked tree as in fig 2, where each line represents a twig.

Figure 2: stable marked trees.

Definition 7. A marked tree is stable if every twig has at least three special
points (marks or nodes).

This stability condition is equivalent to the existence of no nontrivial
automorphisms of the tree that fix all of the marks.

25

I It is connected.

I Each irreducible component is isomorphic to P1.

I If two P1’s intersect, then they do so transversally.

I The curve has (arithmetic) genus zero. This implies that there
are no closed circuits.

I Each component has at least 3 special (singular or marked)
points, and no marked point is singular.



Stable genus zero n-pointed curves (stable n-curves)

A stable genus zero n-curve is a curve with n marked points that
has the following properties:

0

1

(0,0)

(1,1)

( ),

4

3

2

1

0 1
M

U4

0,4

1PI

Figure 1: first attempt at compactifying U4

1. Each irreducible component is isomorphic to 1.

2. The points of intersection of the components are ordinary double points.

3. There are no closed circuits, i.e., if a node is removed then the curve
becomes disconnected.

These three properties are equivalent to saying that the curve has arith-
metic genus zero. Each irreducible component will be called a twig. We will
often draw a marked tree as in fig 2, where each line represents a twig.

Figure 2: stable marked trees.

Definition 7. A marked tree is stable if every twig has at least three special
points (marks or nodes).

This stability condition is equivalent to the existence of no nontrivial
automorphisms of the tree that fix all of the marks.

25

I It is connected.

I Each irreducible component is isomorphic to P1.

I If two P1’s intersect, then they do so transversally.

I The curve has (arithmetic) genus zero. This implies that there
are no closed circuits.

I Each component has at least 3 special (singular or marked)
points, and no marked point is singular.



Stable genus zero n-pointed curves (stable n-curves)

A stable genus zero n-curve is a curve with n marked points that
has the following properties:

0

1

(0,0)

(1,1)

( ),

4

3

2

1

0 1
M

U4

0,4

1PI

Figure 1: first attempt at compactifying U4

1. Each irreducible component is isomorphic to 1.

2. The points of intersection of the components are ordinary double points.

3. There are no closed circuits, i.e., if a node is removed then the curve
becomes disconnected.

These three properties are equivalent to saying that the curve has arith-
metic genus zero. Each irreducible component will be called a twig. We will
often draw a marked tree as in fig 2, where each line represents a twig.

Figure 2: stable marked trees.

Definition 7. A marked tree is stable if every twig has at least three special
points (marks or nodes).

This stability condition is equivalent to the existence of no nontrivial
automorphisms of the tree that fix all of the marks.

25

I It is connected.

I Each irreducible component is isomorphic to P1.

I If two P1’s intersect, then they do so transversally.

I The curve has (arithmetic) genus zero. This implies that there
are no closed circuits.

I Each component has at least 3 special (singular or marked)
points, and no marked point is singular.



Stable genus zero n-pointed curves (stable n-curves)

A stable genus zero n-curve is a curve with n marked points that
has the following properties:

0

1

(0,0)

(1,1)

( ),

4

3

2

1

0 1
M

U4

0,4

1PI

Figure 1: first attempt at compactifying U4

1. Each irreducible component is isomorphic to 1.

2. The points of intersection of the components are ordinary double points.

3. There are no closed circuits, i.e., if a node is removed then the curve
becomes disconnected.

These three properties are equivalent to saying that the curve has arith-
metic genus zero. Each irreducible component will be called a twig. We will
often draw a marked tree as in fig 2, where each line represents a twig.

Figure 2: stable marked trees.

Definition 7. A marked tree is stable if every twig has at least three special
points (marks or nodes).

This stability condition is equivalent to the existence of no nontrivial
automorphisms of the tree that fix all of the marks.

25

I It is connected.

I Each irreducible component is isomorphic to P1.

I If two P1’s intersect, then they do so transversally.

I The curve has (arithmetic) genus zero. This implies that there
are no closed circuits.

I Each component has at least 3 special (singular or marked)
points, and no marked point is singular.



Stable genus zero n-pointed curves (stable n-curves)

A stable genus zero n-curve is a curve with n marked points that
has the following properties:

0

1

(0,0)

(1,1)

( ),

4

3

2

1

0 1
M

U4

0,4

1PI

Figure 1: first attempt at compactifying U4

1. Each irreducible component is isomorphic to 1.

2. The points of intersection of the components are ordinary double points.

3. There are no closed circuits, i.e., if a node is removed then the curve
becomes disconnected.

These three properties are equivalent to saying that the curve has arith-
metic genus zero. Each irreducible component will be called a twig. We will
often draw a marked tree as in fig 2, where each line represents a twig.

Figure 2: stable marked trees.

Definition 7. A marked tree is stable if every twig has at least three special
points (marks or nodes).

This stability condition is equivalent to the existence of no nontrivial
automorphisms of the tree that fix all of the marks.

25

I It is connected.

I Each irreducible component is isomorphic to P1.

I If two P1’s intersect, then they do so transversally.

I The curve has (arithmetic) genus zero. This implies that there
are no closed circuits.

I Each component has at least 3 special (singular or marked)
points, and no marked point is singular.



I Two stable curves are said to be n-isomorphic if there is an
isomorphism preserving the markings.

I This isomorphism necessarily preserves the singularities!

I Stable n-curves have no non-trivial automorphisms preserving
the markings (no n-automorphisms).
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The Moduli Space M0,n

There is a (fine) moduli space for stable n-curves for n ≥ 3 (!)
Moreover:

I M0,n is smooth, compact, and projective!

I M0,n is open in M0,n.

I M0,n −M0,n (closed) is a reducible divisor, and any two of its
components intersect transversally.

I The universal family Un is M0,n+1 ! (more details on this
later).

Some History

It was first constructed by Knudsen in 1983. One of the highlights
of modern algebraic geometry.
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M0,4

M0,4 = P1 − {0, 1,∞} and its universal family
U4 ⊂M0,4 × P1 ⊂ P1 × P1
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1. Each irreducible component is isomorphic to 1.

2. The points of intersection of the components are ordinary double points.

3. There are no closed circuits, i.e., if a node is removed then the curve
becomes disconnected.

These three properties are equivalent to saying that the curve has arith-
metic genus zero. Each irreducible component will be called a twig. We will
often draw a marked tree as in fig 2, where each line represents a twig.

Figure 2: stable marked trees.

Definition 7. A marked tree is stable if every twig has at least three special
points (marks or nodes).

This stability condition is equivalent to the existence of no nontrivial
automorphisms of the tree that fix all of the marks.

25

I Blow-up P1 × P1 at the points 0× 0, 1× 1,∞×∞.

I This separates the sections and so we get a family of curves
over P1 where all the fibers now have 4 distinct marked points.
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This is M0,4 = P1 together with its universal family U4.

U4 = Bl3 points P1 × P1

(picture by Ana-Maria)



The universal family U4 is M0,5

Take a point p ∈ U4 (we will find a stable 5-curve is corresponds
to).

I p is in some fiber of the map, say above q.

I If it is not in one of the sections, and not one of the singular
points of the special fibers, then the stable 5-curve it
corresponds to is the fiber with the marked points
(σ1(q), . . . , σ4(q), p = p5).

I Otherwise we need to stabilize the curve.
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The universal family U4 is M0,5

Stabilization

I If p is not in one of the sections, but it is a singular point of
one of the special ones, then replace the singular point by a
P1 and place p = p5 in this new P1.



Stabilization

I If p is in one of the sections, say σ4 then take the fiber and
add a P1 at σ4(q) and put p4 and p5 on this new P1 (this is
unique up to isomorphism).
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This takes care of all isomorphism classes of 5-curves!
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Figure 7: boundary cycles of M0,5
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(picture taken from Renzo’s notes)



The Universal Family for general n

For each i = 1, . . . , n+ 1 there is a morphism

πi : M0,n+1 →M0,n

that forgets the information of the i-th marking (a forgetful
morphism).

The map stabilizes the curve if it becomes unstable by contracting
the component that became unstable.
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πi : M0,n+1 →M0,n

Definition 8. M0,4
∼= 1 is the moduli space of isomorphism classes of

four pointed stable trees. It is a fine moduli space, with universal family
U4 = Bl( 1 × 1).

These results generalize to larger n.
Fact: The space M0,n of n-pointed rational stable curves is a fine moduli
space compactifying M0,n. It is projective, and the universal family Un is
obtained from Un via a finite sequence of blow-ups. (In particular all the
diagonals need to be blown up in an appropriate order) . For further details
see [KV07] or [?], [?].

One of the exciting features of this theory is that all these spaces are
related to one another by natural morphisms. Consider the map

πi : M0,n+1 → M0,n,

defined by forgetting the ith mark. It is obviously defined if the ith mark
does not belong to a twig with only three special points. If it does belong to
such a twig, then our resulting tree will no longer be stable. In this case, we
must perform what is called contraction.

Contraction: We need to consider two cases:

1. The remaining two special points are both nodes. We make the
tree again stable by contracting this twig so that the two nodes
are now one (see Figure 3).

p
i

contraction

Figure 3: contracting a twig with only two nodes.

2. There is one other mark and one node on the twig in question.
We make the tree stable by forgetting the twig and placing the
mark where the node used to be (Figure4).

26
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Figure 4: contracting a twig with one node and one mark.

We would like to construct a section σi of the family

M0,n+1

πk ↓↑ σi

M0,n

by defining the kth mark to coincide with ith one. It should trouble you that
in doing so we are not considering curves with distinct marked points, but
we can get around this problem by “sprouting” a new twig so that the node
is now where the ith mark was. The kth and the ith points now belong to
this new twig.
This process of making stable a tree with two coinciding points is called
stabilization.
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stabilization

Figure 5: stabilization

Finally, we may now identify our universal family

Un M0,n+1

π ↓ with the family πi ↓
M0,n M0,n

as follows.
The fibre π−1([(C, p1, · · · , pn)]) ⊂ Un is the marked curve itself. So any

27

Why this would be expected to be a morphism of varieties is way
beyond my comprehension!



Each of these
πi : M0,n+1 →M0,n

identifies the universal family Un with M0,n+1

This is precisely what we saw for U4 →M0,4 where we are
forgetting p5 (so the map is π5)...the only thing is that we are now
thinking backwards!

(Instead of taking a point in U4 and understanding what stable
5-curves it parametrizes, we are taking a 5-curve, and seeing what
4-curve we can get from it. )
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π = π5 : M0,5 →M0,4

forgets the 5-th point.

The contractions of the 5-curves are the fibers of the map in the
picture!
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The sections of the universal family
The sections of the universal family represented as

πk : M0,n+1 →M0,n

that give the marked points are given by

σi : M0,n →M0,n+1

by setting pi = pk and stabilizing.
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(picture taken from Renzo’s notes)

Note that k = i won’t happen! We only need n sections.



The sections of the universal family

This may seem strange, but remember that the sections of
U4 →M0,4 were the points of U4 that corresponded to (almost all)
reducible 5-stable curves!



Knudsen’s Construction

I Is inductive.

I Uses the identification Un = M0,n+1 and constructs the fiber
product

? //

��

Un = M0,n+1

��
M0,n+1

//M0,n

I on the right we have the sections σ1, . . . , σn and on the left we
have these plus the diagonal ∆ which intersects all of them.

I This ? space may be singular! [IS IT?]

I Knudsen proves that

M0,n+2 = Un+1 =

{
minimal desingularization of
? that separates the sections

}
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Kapranov’s Construction of M0,n (1993)
Kapranov interprets the points in M0,n as the rational normal
curves in Pn−2 through n points in general position, together with
nodal degenerations of these curves.

Rational Normal Curve (Veronese Curve) in Pn

Is the image of P1 in Pn under a morphism

P1 → Pn

[s : t] 7→ [f0(s, t) : . . . : fn(s, t)]

where f0, . . . , fn is a basis for the vector space of degree n
homogeneous polynomials of degree n. After a change in
coordinates in Pn one can obviously take it the the curve

P1 → Pn

[s : t] 7→ [sn : sn−1t : . . . : tn]

i.e., the Veronese embedding of P1 in Pn.
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I (Classical) There is a unique rational normal curve (Veronese
curve) in Pn−2 through n+ 1 points in general position.

I e.g. A unique conic in P2 through 5 points general points, a
unique twisted cubic in P3 through 6 general points, etc.

I Kapranov: If you drop one of these points, the the family of
Veronese curves and their nodal degenerations (more on this
later) is a representation of all n-stable curves, where the
markings correspond to the points that the curves are going
through.

Example n = 4

The curves that M0,4 = P1 parametrizes can be realized as the set
of conics in P2 through 4 points in general position, together with
their nodal degenerations.

What is happening here: as the conic changes, the cross ratio of
the points is changing (after identifying the conic with P1).
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For example, if we let the points be (0, 0), (0, 1), (1, 0), (1, 1), then
the general conic through these four points is of the form

ax2 + by2 − ax− by = 0

for [a : b] ∈ P1.

The determinant of the associated quadratic form is −ab(a+ b)/4,
and so one can explicitly see that there are only 3 singular conics
through these points, given by the values
[a : b] = [0 : 1], [1 : 0], [1 : −1].
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The total family of this pencil of conics is

U ⊂ P2
x,y,z × P1

a,b

��
P1
a,b

where U = {[x : y : z]× [a : b] | ax2 + by2 − axz − byz = 0}.

This
explicitly shows the situation depicted in our picture (one can
replace b by −b to have the fibers correspond exactly)
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Explicit statement in Kapranov’s paper
I Let p1, . . . , pn be n points in general position in Pn−2,

I H be Hilbert Scheme parametrizing all subschemes of Pn−2,
I V (p0, . . . , pn) be the locus in H of all the rational normal

curves going through the pi.

Then,
I V (p0, . . . , pn) ∼= M0,n.
I The closure of V (p0, . . . , pn) in H is isomorphic to M0,n.
I The points of the closure in H correspond (as parametrized by

the Hilbert Scheme) precisely to stable n-curves in Pn−2 going
through the pi. This correspondence agrees with the one from
M0,n.

I Each component of these reducible curves is a Veronese curve
in the linear subspace of Pn−2 it spans. If the component
contains m special points (marked or singular), then the
component is a Veronese curve of degree m− 2 in a Pm−2.

I The analogous statement holds if instead of H one uses the
Chow variety.
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some comments...

Kapranov (below the statement):

“The first statement [V (p0, . . . , pn) ∼= M0,n] is classical. This
makes it rather surprising that the space M0,n was not discovered
by classical algebraic geometers.”

Key Point of First Statement:

If C,C ′ ∈ V (p0, . . . , pn) are isomorphic as n-curves, the
isomorphism C → C ′, which necessarily fixes the pi extends to an
isomorphism Pn−2 → Pn−2 (this uses duality!) and so is the
identity since it fixes n points in general position.
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some comments...

Where the embedding comes from:

I A stable n-curve (C, x1, . . . , xn) comes with an invertible
sheaf ΩC .

I ΩC = differentials that are regular in the smooth locus of C,
and have at most simple poles at the singular points, with the
residues agreeing on the different branches at the singular
curve.

I ΩC(x1 + . . .+ xn) is very ample and embeds C in Pn−2 (this
was proved by Knudsen) as a union of Veronese curves where
the points xi get sent to points in general position (proved by
Kapranov).
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The universal family morphism
Kapranov’s indentification of stable n-curves
with Veronese curves allowed him to see the
forgetful morphism in a new light:

M0,n+1

πn+1

��
M0,n

Fix the p1, . . . , pn+1 ∈ Pn−1 in general position, and for
p ∈M0,n+1 let Cp ⊂ Pn−1 be the curve through p1, . . . , pn+1 it
corresponds to.

Projection from Pn−1 form pn+1 onto Pn−2 maps p1, . . . , pn to
points in general position, and it maps Cp − {pn+1} to a stable
curve whose closure is a point in M0,n.

This map is πn+1!

Example: If Cp has only two marked points on the component
containing pn+1, then this component is necessarily a line in Pn−1
and it gets contracted by the projection!
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The Kapranov Map

Fix the p1, . . . , pn ∈ Pn−2 from now on, and for p ∈M0,n, let
Cp ⊂ Pn−2 be the genus zero stable n-curve through the pi that it
corresponds to.

Kapranov maps: The maps

κn : M0,n → Pn−3 =

{
lines through
pn in Pn−2

}
p 7→ TpnCp

where TpnCp is the tangent line to Cp at pn (the pi will always be
smooth points of the Cp).

(There are similar maps for the other pi, but I don’t want to start
adding indices in other places.)
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κn : M0,n → Pn−3 =

{
lines through
pn in Pn−2

}
p 7→ TpnCp

I They are morphisms!

I They are blow-up maps!

I The “transition function” Pn−3 → Pn−3 from the map for pi
and pj is a standard Cremona transformation.

I Viewing M0,n as the universal family over M0,n−1 by dropping
the n-th marking, the n− 1 sections of the family get
contracted by κn to n− 1 points in general position.

I κn is the blow-up of

I these n− 1 points
I then the strict transform of the lines connecting them
I then the strict transform of the planes containing three of them
I etc.
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I κn is the blow-up of

I these n− 1 points
I then the strict transform of the lines connecting them
I then the strict transform of the planes containing three of them
I etc.



So....

Theorem (Kapranov)

M0,n is the blow-up of Pn−3 along n− 1 points in general position,
then along the strict transforms of the lines joining the points,
then along the planes containing three of them, etc.

Note: This automatically implies that M0,n is smooth, compact
and projective.
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Example with M0,4 and M0,5

M0,5
κ5 //

π5
��

P2

M0,4 = P1

We already knew that M0,5 was the blow up of P1 × P1 at three
points (this is how we originally constructed it).

Kapranov’s result states this by saying that M0,5 is the blow-up of
P2 at four points in general position (remember that the blow-up
of P1 × P1 at one point is the same as the blow-up of P2 at two
points)
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Example with M0,4 and M0,5

Remember:

I Each point in M0,5 represents a (union of) Veronese curve(s)
in P3 through 5 points p1, . . . , p5 in general position.

I The Kapranov map
M0,5 → P2

sends the point in M0,5 to the tangent line at p5 of the curve
it corresponds to.

I The Kapranov map is also the blow-up of P2 at 4 points.

Question:

What are the curves in the exceptional divisors?
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Example with M0,4 and M0,5

A P1 collapsed by κ5:

I Let p4p5 be the line joining p4 and p3 in P3.

I This intersects the plane p1p2p3 spanned by p1, p2, p3 at a
point q, and p1, p2, p3, q are 4 points in general position in
P2 = p1p2p3.

p1
p2

p3

p4

p5

q

I There is a family of conics in
P2 = p1p2p3 through the 4
points p1, p2, p3, q.

I This family is parametrized
by P1, so correponds to a
P1 ⊂M0,5.

I All the curves in this family
have the same tangent line
at p5, and so get sent to the
same point by κ5!
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Example with M0,4 and M0,5

The other exceptional P1’s of

M0,5 → P2

are constructed similarly, starting with the lies p1p5, p2p5, p3p5
respectively.

We explicitly see they are the sections σ1, . . . , σ4 of the universal
family.

M0,5
κ5 //

π5
��

P2

M0,4 = P1
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Thus, κ5 is sort of the horizontal projection in Ana-Maria’s picture



Compare also to the explicit pencil of conics through 4 points we
found (all maps are projections)

U ⊂ P2
x,y,z × P1

a,b

��

// P2
x,y,z

P1
a,b

where U = {[x : y : z]× [a : b] | ax2 + by2 − axz − byz = 0}.

The horizontal (projection) map is κ5!!
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How the Kapranov maps allow one to see the stable
curves we are parametrizing

If p ∈M0,4, then it corresponds to a fiber of the vertical map

M0,5
κ5 //

π5
��

P2

M0,4 = P1

The horizontal map takes this fiber to an actual conic in P2

through 4 points, which is the Veronese curve corresponds to!
(picture by Ana-Maria)
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This works in general!
The image under the horizontal map of a fiber above p of the
vertical map in

M0,n+1
κn+1 //

πn+1

��

Pn−2

p ∈M0,n

is a model for the of the stable n-curve that p corresponds to.

(picture by Ana-Maria). Note, the Ci are conics because the
contain 4 special points each.



The End
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