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Last Week

Definition
A set α is an ordinal if

I α is well ordered by ∈.

I α is transitive (element implies subset).

Cantor’s naive definition of ordinal numbers

I Start with the natural numbers.

I For each ordinal there is a succesor ordinal.

I Least upper bounds exist: For each set of ordinals {αi} there
is a least ordinal which is larger than them all (sup{αi}).



Last Week
0 := ∅
1 := {∅} = {0}
2 := {∅, {∅}} = {0, 1}
3 := {∅, {∅}, {∅, {∅}}} = {0, 1, 2}
4 := {0, 1, 2, 3}

...

n+ 1 := {0, 1, 2, . . . , n} = n ∪ {n}
...

ω :=
⋃
n

ω + 1 := ω ∪ {ω}
ω + 2 := ω + 1 ∪ {ω + 1}

...

ω + ω :=
⋃

all the previous ones.
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0 ∈ 1 ∈ 2 ∈ 3 ∈ . . . ∈ ω ∈ ω + 1 ∈ . . . ∈ ω + ω ∈ . . .
I Each one is transitive. (element implies subset)

I The restriction of ∈ to any of them gives a well order.

1, 2, 3, 4, 5, . . ., ω, ω + 1, ω + 2, ω + 3 , . . ., ω + ω =: ω · 2,
ω · 2 + 1, ω · 2 + 2, ω · 2 + 3, . . .ω · 3, ω · 3 + 1, ω · 3 + 2, . . . , ω · 4,
. . . , ω ·5, . . . , ω ·ω := ω2 , ω2 +1, ω2 +2, . . . , ω2 +ω, ω2 +ω+1,
. . . , ω2 + ω · 2, . . . , ω2 + ω2 := ω2 · 2 , ω2 · 2 + 1, ω2 · 2 + 2, . . . ,
ω2 · 2 + ω, . . . , ω2 · 3, . . . , ω3, ω3 + 1, . . . , ω4, . . . , ω5, . . . , ωω,
ωω + 1, . . . , ωω·2 , ωω·2 + 1, . . . , ωω·2 , . . . , , ωω·4, . . . , ωω·5 . . . ,
ωω

2
, ωω

2
+ 1, . . . , ωω

3
, . . . , ωω

4
, . . . , ωω

ω
, ωω

ω
+ 1, . . . , ωω

ωω

,

. . . , ωω
ωω
ω

, . . . , ωω
ωω
ωω

..
.

= ε0, ε0 + 1, ε0 + 2, . . . , ε0 + ω, . . .

. . . and so on. And these are all countable!
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Theorems from Set Theory

I ∈ is a linear order on the ordinals (for any two ordinals α and
β either α ∈ β or β ∈ α or α = β).

I Successor Ordinals: If α is an ordinal, then α+ 1 := α ∪ {α}
is an ordinal, and there are no ordinals between α and α+ 1.

I Supremum of a set of ordinals: If {αi} is a set or ordinals
then ∪αi is an ordinal and is the supremum of the αi.

I Every well ordered set is order isomorphic to a UNIQUE
ordinal. (Cantor)
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• • • • . . . ∼= ω

• • • • . . . • ∼= ω + 1
• • • • . . . • • ∼= ω + 2

...

• • • • . . . • • • . . . ∼= ω + ω
...

Explicitly:

1 / 3 / 5 / . . . / 2 / 4 / 6 / . . . ∼= ω + ω
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Definition
A Cardinal is an ordinal which is not in bijection with any of its
predecessors.

Definition

ℵ0 := ω

ℵ1 := The first uncountable ordinal

=
⋃
{α | α is a countable ordinal}

ℵ2 := The first ordinal which is not in bijection with ℵ1

...

In general for any ordinal α we define

I ℵα+1 := The least ordinal which is not in bijection with ℵα.

I ℵα =
⋃
δ<α ℵδ if α is a limit ordinal (not a successor).
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Theorem
Any cardinal is one of the alephs.

ℵ0 < ℵ1 < ℵ2 < ℵ3 < . . . < ℵω :=
⋃
i<ω ℵi < ℵω+1 < ℵω+2

< . . . < ℵω+ω = ℵω·2 < . . . < ℵω2 < ℵω2+1 < . . . < ℵε0
< . . . . . . . . . < ℵℵ1 < ℵℵ1+1 < ℵℵ1+2 < . . . < ℵℵ2 <
. . . < ℵℵ3 < . . . < ℵℵω = ℵℵℵ0

< ℵℵℵ0
+1 < ℵℵℵ0

+2 < . . .
< . . . . . . . . . < ℵℵℵ1

< . . . < ℵℵℵ2
< . . . . . . < ℵℵℵℵ0

. . . < ℵℵℵ
. . .

(ℵ0 times) < . . . < ℵℵℵ
. . .

(ℵ1 times) < . . .

. . . and so on.
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Theorem
(Axiom of Choice implies) Every set can be well ordered, so every
set has the cardinality of a unique cardinal number.

Continuum Hypothesis (Cantor)

| R |= ℵ1

or
2ℵ0 = ℵ1

Theorem
The continuum hypothesis is independent of ZFC:

ZFC + CH and ZFC + ¬CH

are both consistent assuming ZFC is consistent.
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Theorem (Gödel’s first incompleteness theorem)

Any effectively generated theory capable of expressing elementary
arithmetic cannot be both consistent and complete.

Consequences

I There are 2ℵ0 different maths starting from ZF .

I This won’t get any better if we change ZF for something else.

I We will never be able to construct a recursive foundation for
math with first order logic where every question has an
answer.
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The Universe of Math

At the beginning there was nothing

∅

Then there was a set containing nothing

{∅}

Then there was the power set of what already existed

{∅, {∅}}

. . . and so on . . . for all eternity ordinals.
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The Universe of Math

The real definition

V0 := ∅
Vα+1 := ℘(Vα)
Vα := ∪δ<αVδ for all limit ordinals α.

V := The collection of all the Vα

I ZFC allows us to “construct” V ...but V is not a set (by
obvious reasons).

I Set theorists believe that V is the universe of math.

Example

I ω ∈ Vω+1.

I Z, Q, R ∈ Vω+30.
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The ordinals in V

I The ordinals are the backbone of V .

I If a set belongs to Vα you know how complex it can be.

Theorem (Cantor): The ordinals are well ordered.

Corollary: The ordinals are not a set.

Proof.
If the ordinals were a set, by the theorem above they would be an
ordinal themselves.

I “The Ordinals are greater than all the infinities”.

I This paradox pre-dates Rusell’s paradox. Cantor, who was
creating set theory didn’t seem to mind. He said our intellect
was unable to grasp an infinity so big that only God could
understand. Citation required...
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Large Cardinals

I With the axioms of set theory one can construct very large
sets, so even if we restrict sets to lie in a particular Vα, one
can construct a set which does not lie in Vα.

I If this happens, then ZFC does not hold in Vα.

I Example: ZFC does not hold in Vω+ω because 2ℵ0 /∈ Vω+ω

and so R has no cardinal in Vω+ω

Question

Could there be a Vα in which all of ZFC holds?

Answer
Yes. If κ is a strongly inaccessible cardinal then ZFC holds in Vκ.
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Strongly Inaccessible Cardinals

Definition
A cardinal is called strongly inaccessible if:

I It is > ℵ0.

I It is a strong limit cardinal.

I It is a regular cardinal.

Strong Limit Cardinal

ℵα is a strong limit cardinal if 2ℵβ < ℵα for any β < α. (This
implies α is a limit ordinal, but is much stronger).

Regular Cardinal

κ is a regular cardinal if it is not the limit of a sequence indexed by
an ordinal which is less than κ.

Example: ℵω = limn∈ω ℵn = ∪n∈ωℵn is not regular.
Example: ℵ0 is regular and strong limit.
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However....

We cannot prove the existence of a strongly inaccessible cardinal!

Gödel’s Second Incompleteness Theorem

A recursively enumerable theory that can express basic arithmetic
can’t prove its own consistency (unless it is inconsistent!).

I We cannot construct a strongly inaccessible cardinal using
ZFC since its existence would contradict the theorem above.

I Gödel’s Second Incompleteness Theorem implies ZFC cannot
prove its own consistency, so believing ZFC is a consistent
foundation for math is an act of faith.

I Set theorists believe that V is the place where the axioms of
ZFC hold and so ZFC is consistent, but they also have a
proof that they cannot prove this.
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I Gödel’s Second Incompleteness Theorem implies ZFC cannot
prove its own consistency, so believing ZFC is a consistent
foundation for math is an act of faith.

I Set theorists believe that V is the place where the axioms of
ZFC hold and so ZFC is consistent, but they also have a
proof that they cannot prove this.



However....

We cannot prove the existence of a strongly inaccessible cardinal!
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finite numbers both concepts agree, but as soon as we go to
the transfinite world we can see the difference.
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More Information

I Introduction to set Theory, Thomas Jech and Karel Hrbacek.

I Set Theory, Thomas Jech.

I Set Theory, Kenneth Kunen.


