Ranks of quadratic twists of elliptic curves over $\mathbb{F}_q(t)$ Part II

Enrique Acosta and Martin Leslie Advisor: Doug Ulmer

Department of Mathematics University of Arizona

December 11, 2008

Elliptic Curves

Let k be a field with char $k \neq 2, 3$. An Elliptic Curve over k is:

Definition (1)

A nonsingular genus 1 curve with a point with coordinates in k .

Elliptic Curves

Let k be a field with char $k \neq 2, 3$. An Elliptic Curve over k is:

Definition (1)

A nonsingular genus 1 curve with a point with coordinates in k .

Definition (2) A curve in $k{\mathbb P}^2$ defined by an equation of the form

$$
y^2 = x^3 + ax + b
$$

where $a, b \in k$, and the cubic polynomial on the right has no repeated roots.

The Group Law

 $E(k)$ =The set of points with coordinates in k has a group structure.

Mordell's Theorem

Theorem $E(\mathbb{Q})$ is finitely generated.

Consequence $E(\mathbb{Q}) \cong \mathbb{Z}^r \oplus$ "Finite Abelian Group"

Definition

Mordell's Theorem

Theorem $E(\mathbb{Q})$ is finitely generated.

Consequence $E(\mathbb{Q}) \cong \mathbb{Z}^r \oplus$ "Finite Abelian Group"

Definition

- \triangleright There is no known effective method to find the rank.
- \triangleright Conjecture: There are elliptic curves over $\mathbb O$ with arbitrary large rank.

Mordell's Theorem

Theorem $E(\mathbb{Q})$ is finitely generated.

Consequence $E(\mathbb{Q}) \cong \mathbb{Z}^r \oplus$ "Finite Abelian Group"

Definition

- \blacktriangleright There is no known effective method to find the rank.
- \triangleright Conjecture: There are elliptic curves over $\mathbb O$ with arbitrary large rank.
- \blacktriangleright Largest rank known (2006): At least 28.
- \triangleright BSD Conjecture (1 Million): The rank of an elliptic curve E is the order of a zero at $s = 1$ of an L-series associated to E.

Mordell's Theorem over $\mathbb{F}_q(t)$

Theorem $E(\mathbb{F}_q(t))$ is finitely generated.

 $E(\mathbb{F}_q(t)) \cong \mathbb{Z}^r \oplus$ "Finite Abelian Group"

- \blacktriangleright There is no known effective method to find the rank.
- \blacktriangleright THEOREM: There are elliptic curves over $\mathbb{F}_q(t)$ with arbitrary large rank (Shafarevich, Tate).
- \triangleright BSD Conjecture: The rank of an elliptic curve E is the order of a zero at $s = 1$ of an L-series associated to E .

Twists of Elliptic Curves

 $k = \mathbb{Q}$. Let E/k be an elliptic curve defined by

$$
E: \quad y^2 = x^3 + ax + b.
$$

Definition

Let D be a square free integer. The quadratic twist E_D of E by D is the elliptic curve defined by

$$
E_D: Dy^2 = x^3 + ax + b
$$

Question

; What is the rank of E_D ?

The Parity Conjecture

A consequence of two BIG ingredients:

- \triangleright Conjecture: The Birch and Swinnerton-Dyer conjecture.
- \triangleright THEOREM: Modularity (gives a functional equation of the associated L-series to an elliptic curve).

Parity Conjecture

Let E/\mathbb{Q} be an elliptic curve with conductor C and let D be a square-free integer relatively prime to $2C$. Then the ranks of E and E_D have the same parity if and only if $\chi_D(-C) = 1$ (a congruence condition on D depending on C).

Parity Conjecture (for mortals)

There are some congruence conditions on D depending on E which determine if the twist has even or odd rank.

The Article

F. Gouvêa and B. Mazur (1991)

The Square-Free Sieve and the Rank of Elliptic Curves

Ideas

- ► Use the parity conjecture to make twists have rank ≥ 2 .
- \triangleright Use this to show there are lots of twists of a given elliptic curve with rank > 2 .
- ► Get a lower bound for the density of twists with rank > 2 .

Theorem

Let E/\mathbb{Q} be an elliptic curve, and let $\epsilon > 0$. Assume the parity conjecture holds. Then for sufficiently large x we have

 $x^{\frac{1}{2}-\epsilon} \leq \#\{\text{square-free } D \mid |D| \leq x \text{ and } \text{rank}(E_D) \geq 2\}$

Our Goal

Prove the theorem for $\mathbb{F}_q(t)$.

Our Goal

Prove the theorem for $\mathbb{F}_q(t)$.

 \blacktriangleright Figure out what the correct statement is (RTG).

 \blacktriangleright Prove it (coming).

Our Goal

Prove the theorem for $\mathbb{F}_q(t)$.

- \triangleright Figure out what the correct statement is (RTG).
- \blacktriangleright Prove it (coming).

Theorem (conjectured)

Let $E/\mathbb{F}_q(t)$ be an elliptic curve, and let $\epsilon > 0$. Assume the parity conjecture holds. Then for sufficiently large x we have

 $x^{\frac{1}{2}-\epsilon} \leq \#\{\text{square-free polynomial } D \mid q^{\deg D} \leq x \text{ and } \text{rank}(E_D) \geq 2\}$

Structure of the original proof

Theorem

If the parity conjecture holds then for sufficiently large x :

 $x^{\frac{1}{2}-\epsilon} \leq \#\{\text{square-free } D \mid |D| \leq x \text{ and } \text{rank}(E_D) \geq 2\}$

- ► {Twists with rank ≥ 2 } \supseteq {Twists with rank ≥ 2 and EVEN}
- \blacktriangleright {...} \supseteq {square-free D satisfying the right congruence conditions for the rank of E_D to be even, and $rank(E_D) \geq 1$ }

Structure of the original proof

Take the equation of $E: y^2 = x^3 + ax + b$ to have integral coefficients.

- ► Plug in an integer n on the RHS....get $D\hat{n}^2$ with $D \in \mathbb{Z}$ square-free.
- $I(x, y) = (n, \hat{n})$ is a point on the twist E_D .
- \triangleright Theorem (Shafarevich): Only finitely many twists have points of finite order > 2 .
- \triangleright Therefore, this point on this twist will in general have infinite order, so rank $(E_D) > 1$.
- \triangleright NOW: Make sure D is in the right congruence classes to get rank $(E_D) > 2$.

Structure of the original proof

Homogenize the RHS of the equation of E : $y^2 = x^3 + ax + b$ to get $f(X, Z) = X^3 + aXZ + bZ^3$.

- Define $F(X, Z) = Z(X^3 + aXZ + bZ^3)$.
- Any square-free value $D = F(u, v)$ with $u, v \in \mathbb{Z}$ gives you a point on E_D which in general has infinite order.
- Place congruence conditions on u, v so that the $D's$ you get are in the right congruence classes.
- \triangleright Asymptotics of square-free values of binary integral forms subject to the entries belonging to some fixed congruence classes.

Asymptotics

$$
F(X, Z) = Z(X3 + aXZ + bZ3)
$$

 $\left\{\n\begin{array}{c}\n(u, v) \in \mathbb{Z}^2 \text{ such that } D = F(v, u) \text{ is square-free} \\
\text{and are in the right congruence classes}\n\end{array}\n\right\}$ ↓

$$
\bigg\{ \text{square-free } D \biggm| \text{rank}(E_D) \geq 2 \bigg\}
$$

Show the bottom is large by:

- \triangleright Showing the fibers are not that large (easy).
- \triangleright Showing the top is large (hard).

Asymptotics

Setup

- \blacktriangleright $F(X, Z)$ binary form with integral coefficients and irreducible factors of degree ≤ 3 .
- In Let M be a positive integer, a_0, b_0 integers that are relatively prime to M.
- $\blacktriangleright N(x) = \mathsf{set}$ of $(a, b) \in \mathbb{Z}^2$ with:

\n- $$
0 \leq a, b \leq x
$$
\n- $a \equiv a_0 \pmod{M}$, $b \equiv b_0 \pmod{M}$
\n- $F(a, b)$ square-free
\n

Theorem

As $x \to \infty$.

$$
#N(x) = Ax^2 + O(x^2 / log^{1/2} x)
$$

for an explicitly given constant A.

The translation?

Theorem (Acosta/Leslie, 2009?)

Let $F(u, v)$ be a homogeneous square-free polynomial with coefficients in $\mathbb{F}_q[t]$ such that all of its irreducible factors are of degree ≤ 3 . Let M , a_0 , $b_0 \in \mathbb{F}_q[t]$ with a_0 , b_0 both relatively prime to M. Let $N(x)$ denote the number of pairs of monic polynomials (a, b) satisfying $q^{\deg(a)}, q^{\deg(b)} \leq x$ with $(a, b) \equiv (a_0, b_0) \pmod{M}$ for which $F(a, b)$ is square-free.

Then as $x \to \infty$, we have

$$
N(x) = A \cdot x^2 + O(x^2/\log^{1/2}(x))
$$

where A is given by

$$
A = (1/q^{2 \deg(M)}) \prod_{p} (1 - r(p^2)/q^{4 \deg(p)})
$$

with the product taken over all monic irreducible p.