The Genus Expansion

Enrique Acosta

Department of Mathematics
University of Arizona

February 2012



The Gaussian Unitary Ensemble

The Gaussian Unitary Ensemble (GUE) is the space of N x N
Hermitian matrices M = (m;;) with measure

1
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where dM is the Lebesgue measure on the real and imaginary
parts of the matrix entries (N? variables)

dM =[] d(Re mq;)d (Im mij) [ ] dm.
i<j i
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where dM is the Lebesgue measure on the real and imaginary
parts of the matrix entries (N? variables)

dM =[] d(Re mq;)d (Im mij) [ ] dm.
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The constant makes dy a probability measure, so we can (and will)

also write

1
" Jaupexp (—5TrM?2) dM

dp exp (—;TrM2> dM



dy is the joint probability distribution of the N? independent
random variables

{Re mz‘j}z‘<]‘ {lm mij}i<j {mu}

where Re m;j;,Im m;; ~ N(0,1/2) and m;; ~ N (0, 1).



dy is the joint probability distribution of the N? independent
random variables

{Re mz‘j}z‘<]‘ {lm mij}i<j {mu}
where Re m;j;,Im m;; ~ N(0,1/2) and m;; ~ N (0, 1).

A very important fact
For products of two matrix entries one has expectation

1 ifi=land j=k

0 otherwise

(migmp) = /mz‘jmkl dp = {



Wick’s Lemma

If f1,..., fon are 2n linear functions on the m;;, then

(frofmd = D (i) Siafin) - finFin)

couplings

where a coupling of the set {f1, f2,..., fn} is a partition of the set
into n sets of 2 elements

{f17f2>~--afn} = {fiuf]i} U {fi27fj2} u...u {finafjn}

where the ordering is not important.



Wick’s Lemma

If f1,..., fon are 2n linear functions on the m;;, then

(frofmd = D (i) Siafin) - finFin)

couplings

where a coupling of the set {f1, f2,..., fn} is a partition of the set
into n sets of 2 elements

{f17f2>~--afn} = {fiuf]i} U {fi27fj2} u...u {finafjn}

where the ordering is not important.

A way to visualize a pairing is to write the 2n terms next to each
other

fi fo f3 . fon1 fon

and connect them in pairs by arcs.
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(Tr M4)"
In terms of the entries of the matrix we have
N
4
TrM*® = Z My MM g
i7j7k»l:1

(notice the cycle present in the indices of the m's!)

N n

4\
(TrM ) = E My MM
i7j7k7l:1
N N
= E M MM X ... X E TG MR TR 1T
1,7,k,1=1 1,5,k,1=1

N N

= E MMy 52 My by Moy by Moy | X e e X E

i17j17k17l1:1 in7jn7kn7ln:




So...

(TrM4)n

i, ...

J1y---
ki, ...

Ih,. ..

N (mi1j1mj1k1mk1l1ml1i1) X
Z (mi2j2mj2k2mk212m12i2) X
7in e (minjnmjnknmknlnmlnin)
7‘]1n -1

y in
ol



So...

N (mi1j1mj1k1mk1l1ml1i1) X
(TrM4)n = Z (mi2j2mj2k2mkzlz Migiy) X - ..
ity iy (Mg e T 1, )
jla s >jn -1
ki,...,kn
T

which we write compactly as
(Tr)" =3 " M,
g

where 0 = (41,92, ..., in, j1s- -y Jn, K1y -« knyl1, ..., 1) runs over
the N*" choices for the indices from 1 to N and M, is defined as

My = (Mg jy Ty ey Moy 1y Mgy ) (Mg My by Mokl Miliy) - -+ (Mg i T ke T



Now, for the expectation of (TrM4)n we have

((Tr?)") = (M)
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couplings
of the 4n
terms in M,

where C; = mqgm.s if C; is the couple corresponding to
{mag, m75}-



Now, for the expectation of (TrM4)n we have
((Tea)") =3 (M)

and to compute (M,) we may use Wick's lemma to write

((Trmh)™) =N > (C1) ... (Can)

couplings
of the 4n
terms in M,

where C; = mqgm.s if C; is the couple corresponding to
{mag, m75}-

Note that this is jumbling-up the indices in a non-trivial way
because of the cycles in the double indices.
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» (Cy)...{(Cap) is either 0 or 1, and it is 1 only when some
conditions for the double indices in all of the couples in the
coupling are satisfied.

» Specifically, if C = mqgm.s, then
(C) =1<= a=0and =y

which is independent of the actual values of o, 3,~, 6 as long
as the equalities hold.

» This shows that the value of (C;)...(Cay,) only depends on
equalities between the indices, and not on the specific values
of the indices.



» Because of this, we may change the order of summation
above to obtain

((TrH)™) = > Y (Cr). . (Con)
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of the 4n double
indices in M,

where we are now considering the couplings of the generic 4n
double indices
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and then assigning them specific values when we sum over o.



» Because of this, we may change the order of summation
above to obtain

((TrH)™) = > Y (Cr). . (Con)

couplings 7
of the 4n double
indices in M,

where we are now considering the couplings of the generic 4n
double indices

Z.1.7'1 jlkl klll llil 2‘2‘7.2 Zn]n ]nkn knln lnin

and then assigning them specific values when we sum over o.

» In this case C = mqgm.s if C is the couple corresponding to
the indices {a3,~d}.
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Example n =1

N
4
TrM*= = Z mijmjkmklmli,
1,7,k l1=1

If we compute (TrM*) using Wick's lemma we get

(TrM*) = > > (C){C)
couplings 7
of the 4 double
indices in M,

where in this case we need to consider the couplings of the four
double indices
ij jk kl i
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Example n =1

ij jk kI i
There are 3 such couplings, given by
A {ig, gk}, {kL,1i}
B. {ij, kl}, {jk, li}
C. {ij,1i}, {jk. ki}

(TeM™y = Y magmye) (mugma) + Y (magmaa) (mgmu) +

> (migmu) (mjxmp)
= Z di + Z 0i1010i 01 + Z dj1
= N+ N4+N3

ON3 + N
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Diagrams
Fix a coupling if the 4n double indices in the computation of
<(TrM4)n> . Using the coupling we construct the following graph:
we construct the following graph:

» Make n vertices, corresponding to the n groups of indices
(according to the parenthesis) in

M, = (mi1j1 Mjiky mklllmhil)(mizjzmj2k2mkzl2 ml2i2) s (minjnmjn

> To each vertex we assign 4 double edges, shown vertically and
horizontally in the picture.
€1 i1 el i2 en in

f] i] 62 iZ en in

k] j] kz ) jZ kn . jn
k4 j k2 )2 kn n

NOTE: Each double edge corresponds to an entry in the matrix.
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that makes that pair (C) # 0:



Diagrams

» Connect the double edges according to the pairing while
preserving the orientations.
» Example: if 4151 and j,k, are paired, then we connect them
in the diagram as
i1 Ky

jl jn
» Note: The orientations are there to encode the information
that makes that pair (C) # 0: If C is the couple corresponding
to aff and 74, then (mqgm4s) =1 if and only if & =6 and
B =, and this will be encoded in the graph as

d
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Diagrams

We have now constructed a labeled directed multi-graph for a
given coupling of the 4n double indices

i1 ik kel dede oo dndn Jnkn knln o lnin
which we call a diagram.
From the diagram of a given coupling we can easily see which
conditions on the 4n indices {iy,,j,,k,,l,}]'_; imply that
(C1) ... {(Cop) = 1.

Just follow the labels of the individual edges!



Example n =1
Couplings
A {ig, jk}, {kl, i}

B. {ij. ki}, {jk.li}
B. {ij. i}, {jk, k}

Diagrams




¥



For coupling A, we have the cycles
i —k—1
I —1
J—=J

from which we can read the conditions i = k, [ =, j = 7 which
are the ones that make the term (m;;jm;i) (muimy;) corresponding
to the coupling be nonzero.



For coupling B we have the cycle

t—>l—=k—j—1i

from which we see that for the term (m;jmu;)(m; ;)
corresponding to the coupling to be nonzero (and so equal to 1)
we must havei=j =k =1[.



The Faces of Diagram

In general (i.e., for arbitrary number of vertices n), for a coupling
with F' cycles we have

> (C1)...(Con) =NT.
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The Faces of Diagram

In general (i.e., for arbitrary number of vertices n), for a coupling
with F' cycles we have

> (C1)...(Con) =NT.

o

We call these cycles the faces of the diagram.



Back to the Example n =1

A B. C
<TrM4> = Z(mijmjk)(mklmm + (mijmkl><mjkmli> + (mwmm(m
= > G+ D> Sadibiidn + Y 5
= N34+ N+ N3

2N + N



The general count

((TrM")"™y = > > e

couplings
of the 4n double
indices in M,
0 number of
= Z couplings .NF
F=1 \ with F faces

(note this sum is finite).

<C2n>



Diagrams and cell structures

Let I" be a diagram from the expansion of <(TrM4)n> which is
connected.

From the information in I' we obtain a CW-complex structure for a
compact orientable surface as follows:



Diagrams and cell structures

Let I" be a diagram from the expansion of <(TrM4)n> which is
connected.

From the information in I' we obtain a CW-complex structure for a
compact orientable surface as follows:

> O-cells: The vertices.
> 1-cells: The edges. Glued to the O-cells as in the diagram.

» 2-cells: Discs. Glued to the 1-skeleton according to the cycles
in the diagram.



This is why we called the cycles in the diagram faces!



G=

Euler Formula
The genus of a compact orientable surface constructed from V/
vertices, F/ edges and F faces is given by

2-29=V —-E+F



So, we can view I' as a (multi-)graph which is embedded inside a
compact orientable surface.
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Then we can view each component of I' as an embedded graph
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» If we use the Euler formula to compute the “genus”, then this
genus may now be negative!



So, we can view I' as a (multi-)graph which is embedded inside a
compact orientable surface.

If T is not connected
Then we can view each component of I' as an embedded graph
inside an orientable surface.

» If we use the Euler formula to compute the “genus”, then this
genus may now be negative!

» e.g. A coupling from <(TrM4)2> with genus —1:
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The Bijection

We have seen the bijection

labeled diagrams
n } — with n
)")

{ couplings
4-valent vetices

from < (TrM4

And, if we keep the labels in the graphs, then we have the bijection

embedded labeled graphs

labeled diagrams in compact orientable
with n — surfaces with complement
4-valent vetices equal to a disjoint union of

sets homeomorphic to discs

In the last term we can decide to forget some information and still
maintain the bijection.



Example

There is a bijection between the couplings from {(TrM*)™) and
embedded 4-valent graphs with n vertices where:

» The complement of the graph is a disjoint union of sets
homeomorphic to discs.

> We always take the outwards orientation of the surfaces
invloved.

» The vertices of the graph are labeled (1 =1,...,n).
» Each vertex has a marked (special) edge.
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Example

There is a bijection between the couplings from {(TrM*)™) and
embedded 4-valent graphs with n vertices where:

» The complement of the graph is a disjoint union of sets
homeomorphic to discs.

> We always take the outwards orientation of the surfaces
invloved.

» The vertices of the graph are labeled (1 =1,...,n).
» Each vertex has a marked (special) edge.
From a graph like this we can get recover a diagram because:

» The orientation tells us what “clockwise” means at each
vertex.

» The vertex label tells us what the sub-indices of the
double-edge labels will be (e.g. for vertex 2 they will be
i2, jo, k2, l2)

» The special edge tells us which is the double edge with labels
11, j1 corresponding to the matrix entry m;, ;.



Why the orientations are important

Without the labels (which induce orientations), from an abstract
(multi-)graph we can get cell structures for very different surfaces!

(Image from Zvonkin's “Matrix Integrals and Map Enumeration™)
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How many times does an unlabeled graph show up in the
count in the integral?

As many as there are ways to label it differently in such a way that
the new labeling gives a graphs which is no equivalent (different
combinatorial data). Note, it may happen that a re-labeling does
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of the graph.



The count without labels

When are two embedded labeled graphs equal?

According to the integral, they are equal if they correspond to the
same diagram (combinatorial data).

Topologically, we are identifying labeled graphs that correspond
under orientation preserving homeomorphisms of the surface.

How many times does an unlabeled graph show up in the
count in the integral?

As many as there are ways to label it differently in such a way that
the new labeling gives a graphs which is no equivalent (different
combinatorial data). Note, it may happen that a re-labeling does
not change the coupling!.

One may call this multiplicity the size of the automorphism group
of the graph.

This number is NOT easy to compute!
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Back to the count

() = XY @)
couplings
of the 4n
indices in M,

00 number of
= Z couplings -NF
F=1 \ with F faces

00 number of
= Z couplings | - N2729Fn
g=—oco \ of genus g

number of labeled

00 graphs with n
= Z 4-valent vertices embedded | - N27291n
g=-—00 in a (collection of)

genus g surface(s)



The General Case (arbitrary valence)
Expectations of the form
((TeAY)™ (Ted?)™ .. (Ted2”)™).

will correspond (via Wick's lemma) to diagrams with n; vertices of
valence 1, no vertices of valence 2 and so on.



The General Case (arbitrary valence)

Expectations of the form
((TeMY)™ (TeM2)"™ . (TeM?)™).

will correspond (via Wick's lemma) to diagrams with n; vertices of
valence 1, nqy vertices of valence 2 and so on.
The vertices are numbered by tuples

(a,b) = (vertex #,valence),

where b=1,...,vand a =1,...,n (it is understood that if

nj = 0 then there are no vertices of valence j), and around each
vertex we place the corresponding number of edges, and label the
vertex (a,b) clockwise by

(a,b) -(a,b) :(a,b)
(AR S A



7552,4) Z.;2,4)

(2,4) ig2’4)

@(12’4) ’ig2’4)

Example: The second vertex of valence 4
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By following the same arguments as above for the case of 4-valent
diagrams one may show that

00 number of
<(TrM1)n1 (Ter)n2 S (TrM)™ ) = Z couplings NT
F=1 \ with I faces

or
<H (TrM] > Z Ag ni,. N2_2g+% 25 (=2)n3
j=1 gEZL
where Ay, .n, is the number of diagrams of genus g with n;

vertices which are j-valent.

The strange exponent in the N

» There are V =) n; vertices, and E = %Zjnj edges.

» 2—-2g=V — E+ F gives F (the number of cycles in the
coupling or the diagram) in terms of the other quantities.



The Generating Function

If we set
F(ty,...,t,) = {exp (W TrM" + 2 TrM? + ... + 1, TrMY)),
then we can recover all the expectations by noting that
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t=0

where we are interpreting the derivative of F' as the formal
derivative under the integral sign.



The Generating Function

If we set
F(ty,...,t,) = {exp (W TrM" + 2 TrM? + ... + 1, TrMY)),

then we can recover all the expectations by noting that

87’1

v _ 1\m1 2\ N2 N
8t’f1...8tﬁ”F <(TrM) (TrM) o (TrM™) >,

=0
where we are interpreting the derivative of F' as the formal
derivative under the integral sign.

Note: We are not claiming that F' is differentiable at t = 0 (in
fact, sometimes F' is undefined if ¢ # 0), and this should just be
interpreted as a formal “packaging” of all the quantities
((TrMM)™ (TrM )™ L (TrM)™).



Another way to interpret F'(t1,...,t,) is to view it as the formal
generating function of the <(Tr]\41)n1 (TrM2)n2 . (TrM¥)™) by
using the expansion of the exponential



Another way to interpret F'(ty,...
generating function of the <(Tr]\41)”1 (TrM2)"2 .

,ty) is to view it as the formal

(TrM¥)™) by

using the expansion of the exponential

exp(ait; + ...

n>0

Z 1 Z
n>0 ni+..+ny,=n

tat,) = Y,

(Cbltl + ...+ al,tl,)”

n!

n!
R a;ti)"
ni!...ny! H( iti)

[T a)’
— Z Z j=1%; tn1 o
ni!...ny,! v

n>0ni+...+n,=n

I,

v
n!...n,!



If we use this in the the integral in
F(ty,....t,) = (exp (L TrM" + t,TrM? + ... + ¢, TrM")),
and then formally commute integrals and sums we obtain
((TeMY)™ (TeM2)™ . (TeM?)™)
W __» 1
F(ty, ... t,)%= Z —— £

ni,...,ny >0
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If we use this in the the integral in
F(ty,....t,) = (exp (L TrM" + t,TrM? + ... + ¢, TrM")),
and then formally commute integrals and sums we obtain
((TeMY)™ (TeM2)™ . (TeM?)™)
W __» 1
F(ty, ... t,)%= Z —— £

ni,...,ny >0

which again, just means that
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If we use this in the the integral in
F(ty,....t,) = (exp (L TrM" + t,TrM? + ... + ¢, TrM")),
and then formally commute integrals and sums we obtain
((TeMY)™ (TeM2)™ . (TeM?)™)
W __» 1
F(ty, ... t,)%= Z —— £

ni,...,ny >0

which again, just means that

6’)1

TR T Fl = {(TrM")™ (TrM?)"™ L (TeMY)™ ),

t=0

and again, does not mean F' is differentiable!

Ny
o
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not exactly F'(t).



The Partition Function

» The partition function Zx(t) that appears in the papers in
not exactly F'(t).

» F'(t) is the generating function for
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The Partition Function

» The partition function Zx(t) that appears in the papers in
not exactly F'(t).

» F'(t) is the generating function for

TeM )™ (TeM2)™ L (TeMY)™) = 3 Ag o, NP2 225072
g7 b
g€eZ

» We clean up the exponents on the right by taking them to the
left

“ 1
<H T(—-2)n; (Teat?)” > D Ag,n, N?7
j=1 N2V g€L

» And let Zn(—t) be the generating function of these Laurent
polynomials in V.



The Partition Function

ZN(t) = <exp —ZN’%(j’Q)ther >,

J=1

giving the formal expansion

(T N72072) (1))

Znv) =" Y (F)=m

n!...n,!
ni,...,ny >0 L v

after expand with the Taylor series for the exponential.

ny
L

Ny
t'/



The Partition Function

v

Zn(t) = <eXp —> N 202t Tr >

Jj=1

giving the formal expansion

(I V72672 (o)™

ni!...n,!

Znv) =" Y (F)=m

N1y 20

i

after expand with the Taylor series for the exponential.

Remember:

<HN 2 (Trm?)" > > Agny,.n, N>

where A, . n, is the number of diagrams of genus g with n;
vertices of valence j.



The Partition Function

Jexp (— >i—1 N’%(j’Q)ther) ez 1M g0
- fe—%TerdM

~

Zn(t

Make t/h\e substitution M = \/NJ\/J\ in both integrals to obtain
(with M instead of M, but | drop the hat below)

2 (t) _ fexp(—NTr(W(M)))dM
MU Jexp(=NTr(Vo(M)))dM

where

1 - ;
Vi(M) = S M + > M.
j=1
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g-diagrams with n; vertices which are j-valent! Explicitly:
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The magic of the log

=~ P, N
log Zn(t)“ =" Z (—I)Z"j ;1""""“75 ')t?l R
>0 11...my!

then P, . n,(N) is the Laurent polynomial counting connected
g-diagrams with n; vertices which are j-valent! Explicitly:

Poyon,(N) = Y AGE ) NP2

g=>0

where A% is the number of connected g-diagrams with n;

vertices which are j-valent.

... Now reorder the sum on the right ...



The Genus Expansion

1

N2 IOgZN( )tLu:????Zeg NQQ
920
where
Kg(M1,...,M
W= T cuEemnetde g
nl""7nl/20 nl' LR n,,.
and kg4(n1,...,n,) is the number of of connected labeled diagrams

of genus g with n-vertices of valence j.



A Precise Mathematical Interpretation

1 - (1313 2999 1
N2 log Zn(t)"" = Z>:o €g (t)m7
9>

Ercolani and McLaughlin, 2003:
It v is even, then there is a in cone ) C RY with vertex at the
origin for the t's for which log Zx(t) is a differentiable function of

t, and there is an Ny > 0 such that for all G > 0 there exists a
constant Cg such that

L. > ei(t) ec(t) Cq
’]\mlogZN(t)— <€0(t)+ N2 + ...+ N2G < N2G+2

for all t € 2 and NV > Nj, and the same holds for the partial
derivatives of log Zx(t) (with possibly different constants C¢).



A Precise Mathematical Interpretation

1 7 W _ »» § 1
N2 1Og ZN (t) = — €g (t) N29’
9=

Ercolani and McLaughlin, 2003:
It v is even, then there is a in cone ) C RY with vertex at the
origin for the t's for which log Zx(t) is a differentiable function of

t, and there is an Ny > 0 such that for all G > 0 there exists a
constant Cg such that

L. > ei(t) ec(t) Cq
’]\mlogZN(t)— <€0(t)+ N2 + ...+ N2G < N2G+2

for all t € Q and N > Ny, and the same holds for the partial
derivatives of log Zx (t) (with possibly different constants Cg).
Note, this does not imply equality since the constant Cc depends
on (. It does imply nonetheless that both quantities get closer as
N — oo uniformly for t €  and fixed G.



