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The Gaussian Unitary Ensemble

The Gaussian Unitary Ensemble (GUE) is the space of N ×N
Hermitian matrices M = (mij) with measure

dµ =
1

2N/2πN2/2
exp

(
−1

2
TrM2

)
dM

where dM is the Lebesgue measure on the real and imaginary
parts of the matrix entries (N2 variables)

dM =
∏

i<j

d (Re mij)d (Im mij)
∏

i

dmii.

The constant makes dµ a probability measure, so we can (and will)
also write

dµ =
1∫

GUE exp
(
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2TrM2
)
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dµ is the joint probability distribution of the N2 independent
random variables

{Re mij}i<j {Im mij}i<j {mii}

where Re mij , Im mij ∼ N (0, 1/2) and mii ∼ N (0, 1).

A very important fact

For products of two matrix entries one has expectation

〈mijmkl〉 =

∫
mijmkl dµ =

{
1 if i = l and j = k

0 otherwise
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Wick’s Lemma

If f1, . . . , f2n are 2n linear functions on the mij , then

〈f1 . . . f2n〉 =
∑

couplings

〈fi1fj1〉〈fi2fj2〉 . . . 〈finfjn〉

where a coupling of the set {f1, f2, . . . , fn} is a partition of the set
into n sets of 2 elements

{f1, f2, . . . , fn} = {fi1 , fj1} t {fi2 , fj2} t . . . t {fin , fjn}

where the ordering is not important.

A way to visualize a pairing is to write the 2n terms next to each
other

f1 f2 f3 . . . f2n−1 f2n

and connect them in pairs by arcs.
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(Tr M 4)n

In terms of the entries of the matrix we have

TrM4 =

N∑

i,j,k,l=1

mijmjkmklmli

(notice the cycle present in the indices of the m’s!)

(
TrM4

)n
=




N∑

i,j,k,l=1

mijmjkmklmli



n

=




N∑

i,j,k,l=1

mijmjkmklmli


× . . .×




N∑

i,j,k,l=1

mijmjkmklmli




=




N∑

i1,j1,k1,l1=1

mi1j1mj1k1mk1l1ml1i1


× . . .×




N∑

in,jn,kn,ln=1

minjnmjnknmknlnmlnin


 endarray
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So...

(
TrM4

)n
=

N∑

i1, . . . , in
j1, . . . , jn
k1, . . . , kn
l1, . . . , lm

=1

(mi1j1mj1k1mk1l1ml1i1)×
(mi2j2mj2k2mk2l2ml2i2)× . . .
. . . (minjnmjnknmknlnmlnin)

which we write compactly as

(
TrM4

)n
=
∑

σ

Mσ

where σ = (i1, i2, . . . , in, j1, . . . , jn, k1, . . . kn, l1, . . . , ln) runs over
the N4n choices for the indices from 1 to N and Mσ is defined as

Mσ = (mi1j1mj1k1mk1l1ml1i1)(mi2j2mj2k2mk2l2ml2i2) . . . (minjnmjnknmknlnmlnin)
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Now, for the expectation of
(
TrM4

)n
we have

〈(
TrM4

)n〉
=
∑

σ

〈Mσ〉

and to compute 〈Mσ〉 we may use Wick’s lemma to write

〈(
TrM4

)n〉
=
∑

σ

∑

couplings
of the 4n

terms in Mσ

〈C1〉 . . . 〈C2n〉

where Ci = mαβmγδ if Ci is the couple corresponding to
{mαβ,mγδ}.

Note that this is jumbling-up the indices in a non-trivial way
because of the cycles in the double indices.
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I 〈C1〉 . . . 〈C2n〉 is either 0 or 1, and it is 1 only when some
conditions for the double indices in all of the couples in the
coupling are satisfied.

I Specifically, if C = mαβmγδ, then

〈C〉 = 1⇐⇒ α = δ and β=γ

which is independent of the actual values of α, β, γ, δ as long
as the equalities hold.

I This shows that the value of 〈C1〉 . . . 〈C2n〉 only depends on
equalities between the indices, and not on the specific values
of the indices.
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I Because of this, we may change the order of summation
above to obtain

〈(
TrM4

)n〉
=

∑

couplings
of the 4n double

indices in Mσ

∑

σ

〈C1〉 . . . 〈C2n〉

where we are now considering the couplings of the generic 4n
double indices

i1j1 j1k1 k1l1 l1i1 i2j2 . . . injn jnkn knln lnin

and then assigning them specific values when we sum over σ.

I In this case C = mαβmγδ if C is the couple corresponding to
the indices {αβ, γδ}.
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Example n = 1

TrM4 =

N∑

i,j,k,l=1

mijmjkmklmli,

If we compute
〈
TrM4

〉
using Wick’s lemma we get

〈
TrM4

〉
=

∑

couplings
of the 4 double
indices in Mσ

∑

σ

〈C1〉〈C2〉

where in this case we need to consider the couplings of the four
double indices

ij jk kl li
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Example n = 1

ij jk kl li

There are 3 such couplings, given by

A. {ij, jk}, {kl, li}
B. {ij, kl}, {jk, li}
C. {ij, li}, {jk, kl}

〈
TrM4

〉
=

∑

σ

〈mijmjk〉〈mklmli〉+
∑

σ

〈mijmkl〉〈mjkmli〉+

∑

σ

〈mijmli〉〈mjkmkl〉

=
∑

σ

δik +
∑

σ

δilδjkδjiδkl +
∑

σ

δjl

= N3 +N +N3

= 2N3 +N
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Diagrams
Fix a coupling if the 4n double indices in the computation of〈(

TrM4
)n〉

. Using the coupling we construct the following graph:
we construct the following graph:

I Make n vertices, corresponding to the n groups of indices
(according to the parenthesis) in

Mσ = (mi1j1mj1k1mk1l1ml1i1)(mi2j2mj2k2mk2l2ml2i2) . . . (minjnmjnknmknlnmlnin)

I To each vertex we assign 4 double edges, shown vertically and
horizontally in the picture.772 N. M. Ercolani and K. D. T.-R. McLaughlin
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j1
k1
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!2
!2

i2
i2

j2

j2
k2

k2

2
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!n

in
in

jn
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kn

n

Figure 2.1

of such a glueing will be a diagram. Indeed, if we interpret each road in Figure 2.1 as

an edge, and each edge is labelled by the outgoing side of the road, we clearly have a

diagram. (The faces of the diagram correspond 1-1 to the closed index cycles of that cou-

pling.)Conversely, given a diagram as defined,which includes the labellings,we can read

off directly, from the way the incident edges are paired, what the couplings must be. This

gives a bijection between diagrams and Wick couplings.

The full count of nonvanishing contributions is then given by summing over dia-

grams with a weighting NF(ω) that counts the number of configurations that give rise to

a nonvanishing contribution in the coupling ω associated to this diagram. Also the ex-

ponent of the weighting F(ω), which was defined to be the number of closed index cycles

in the coupling, is now also seen to be the number of faces F in the associated diagram.

The weighting factor is NF. If the diagram is connected (i.e., if it is a map), this can be ex-

pressed in terms of the genus of the Riemann surface that the diagram maps to by using

Euler’s formula. Since the number of vertices of a diagram is n and the number of edges is

2n (= the number of couples in a Wick coupling), we have 2 − 2g = n − 2n + F from which

we deduce that the weighting factor for a 4-valent, n-vertex g-map is N2−2g+n. We can

directly extend this to the case of disconnected diagrams since the Euler characteristic

is additive with respect to disjoint unions. This generalization results in the possibility

that g can become negative. Thus, to each diagram, we can associate a unique integer g

and then we will refer to that diagram as a g-diagram.

The beautiful connection between the quantity 〈(Tr M4)n〉 and the combinatorics

of g-diagrams described in [3] (and discussed above) is summarized with the following

formula:

〈(
Tr M4

)n〉
=

∑

g

#{4-valent, n-vertex g-diagrams} N2−2g+n. (2.16)

We remark that this is a finite sum, and the reader may easily verify that the nonzero

contributions to this sum come from 1−n ≤ g ≤ [(n+1)/2] where [!] is the closest integer

to ! less than or equal to !. A straightforward extension of the above analysis to the case
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NOTE: Each double edge corresponds to an entry in the matrix.
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is additive with respect to disjoint unions. This generalization results in the possibility

that g can become negative. Thus, to each diagram, we can associate a unique integer g

and then we will refer to that diagram as a g-diagram.

The beautiful connection between the quantity 〈(Tr M4)n〉 and the combinatorics

of g-diagrams described in [3] (and discussed above) is summarized with the following

formula:

〈(
Tr M4

)n〉
=

∑

g

#{4-valent, n-vertex g-diagrams} N2−2g+n. (2.16)

We remark that this is a finite sum, and the reader may easily verify that the nonzero

contributions to this sum come from 1−n ≤ g ≤ [(n+1)/2] where [!] is the closest integer

to ! less than or equal to !. A straightforward extension of the above analysis to the case
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NOTE: Each double edge corresponds to an entry in the matrix.



Diagrams
Fix a coupling if the 4n double indices in the computation of〈(

TrM4
)n〉

. Using the coupling we construct the following graph:
we construct the following graph:
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(according to the parenthesis) in

Mσ = (mi1j1mj1k1mk1l1ml1i1)(mi2j2mj2k2mk2l2ml2i2) . . . (minjnmjnknmknlnmlnin)

I To each vertex we assign 4 double edges, shown vertically and
horizontally in the picture.772 N. M. Ercolani and K. D. T.-R. McLaughlin
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Diagrams

I Connect the double edges according to the pairing while
preserving the orientations.

I Example: if i1j1 and jnkn are paired, then we connect them
in the diagram as

i1

j1 jn

kn

1 n

I Note: The orientations are there to encode the information
that makes that pair 〈C〉 6= 0: If C is the couple corresponding
to αβ and γδ, then 〈mαβmγδ〉 = 1 if and only if α = δ and
β = γ, and this will be encoded in the graph as

α

β γ

δ
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Diagrams

We have now constructed a labeled directed multi-graph for a
given coupling of the 4n double indices

i1j1 j1k1 k1l1 l1i1 i2j2 . . . injn jnkn knln lnin

which we call a diagram.

From the diagram of a given coupling we can easily see which
conditions on the 4n indices {iν , jν , kν , lν}nν=1 imply that

〈C1〉 . . . 〈C2n〉 = 1.

Just follow the labels of the individual edges!
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Example n = 1

Couplings

A. {ij, jk}, {kl, li}
B. {ij, kl}, {jk, li}
B. {ij, li}, {jk, kl}

Diagrams
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l
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A. B. C.
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A. B. C.

For coupling A, we have the cycles

i→ k → i
l→ l
j → j

from which we can read the conditions i = k, l = l, j = j which
are the ones that make the term 〈mijmjk〉〈mklmli〉 corresponding
to the coupling be nonzero.
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from which we can read the conditions i = k, l = l, j = j which
are the ones that make the term 〈mijmjk〉〈mklmli〉 corresponding
to the coupling be nonzero.
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For coupling B we have the cycle

i→ l→ k → j → i

from which we see that for the term 〈mijmkl〉〈mjkmli〉
corresponding to the coupling to be nonzero (and so equal to 1)
we must have i = j = k = l.



The Faces of Diagram

In general (i.e., for arbitrary number of vertices n), for a coupling
with F cycles we have

∑

σ

〈C1〉 . . . 〈C2n〉 = NF .

We call these cycles the faces of the diagram.
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Back to the Example n = 1
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A. B. C.

〈
TrM4

〉
=

∑

σ

〈mijmjk〉〈mklmli〉+ 〈mijmkl〉〈mjkmli〉+ 〈mijmli〉〈mjkmkl〉

=
∑

σ

δik +
∑

σ

δilδjkδjiδkl +
∑

σ

δjl

= N3 +N +N3

= 2N3 +N



The general count

〈(
TrM4

)n〉
=

∑

couplings
of the 4n double

indices in Mσ

∑

σ

〈C1〉 . . . 〈C2n〉

=

∞∑

F=1




number of
couplings

with F faces


 ·NF

(note this sum is finite).



Diagrams and cell structures

Let Γ be a diagram from the expansion of
〈(

TrM4
)n〉

which is
connected.

From the information in Γ we obtain a CW-complex structure for a
compact orientable surface as follows:

I 0-cells: The vertices.

I 1-cells: The edges. Glued to the 0-cells as in the diagram.

I 2-cells: Discs. Glued to the 1-skeleton according to the cycles
in the diagram.
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This is why we called the cycles in the diagram faces!
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j
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Euler Formula
The genus of a compact orientable surface constructed from V
vertices, E edges and F faces is given by

2− 2g = V − E + F



So, we can view Γ as a (multi-)graph which is embedded inside a
compact orientable surface.

If Γ is not connected
Then we can view each component of Γ as an embedded graph
inside an orientable surface.

I If we use the Euler formula to compute the “genus”, then this
genus may now be negative!

I e.g. A coupling from
〈(

TrM4
)2〉

with genus −1:
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The Bijection

We have seen the bijection

{
couplings

from
〈(

TrM4
)n〉

}
←→





labeled diagrams
with n

4-valent vetices





And, if we keep the labels in the graphs, then we have the bijection





labeled diagrams
with n

4-valent vetices



←→





embedded labeled graphs
in compact orientable

surfaces with complement
equal to a disjoint union of
sets homeomorphic to discs





In the last term we can decide to forget some information and still
maintain the bijection.



The Bijection

We have seen the bijection

{
couplings

from
〈(

TrM4
)n〉

}
←→





labeled diagrams
with n

4-valent vetices





And, if we keep the labels in the graphs, then we have the bijection





labeled diagrams
with n

4-valent vetices



←→





embedded labeled graphs
in compact orientable

surfaces with complement
equal to a disjoint union of
sets homeomorphic to discs





In the last term we can decide to forget some information and still
maintain the bijection.



The Bijection

We have seen the bijection

{
couplings

from
〈(

TrM4
)n〉

}
←→





labeled diagrams
with n

4-valent vetices





And, if we keep the labels in the graphs, then we have the bijection





labeled diagrams
with n

4-valent vetices



←→





embedded labeled graphs
in compact orientable

surfaces with complement
equal to a disjoint union of
sets homeomorphic to discs





In the last term we can decide to forget some information and still
maintain the bijection.



Example
There is a bijection between the couplings from

〈(
TrM4

)n〉
and

embedded 4-valent graphs with n vertices where:

I The complement of the graph is a disjoint union of sets
homeomorphic to discs.

I We always take the outwards orientation of the surfaces
invloved.

I The vertices of the graph are labeled (i = 1, . . . , n).

I Each vertex has a marked (special) edge.

From a graph like this we can get recover a diagram because:

I The orientation tells us what “clockwise” means at each
vertex.

I The vertex label tells us what the sub-indices of the
double-edge labels will be (e.g. for vertex 2 they will be
i2, j2, k2, l2)

I The special edge tells us which is the double edge with labels
i1, j1 corresponding to the matrix entry mi1,j1 .
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Why the orientations are important

Without the labels (which induce orientations), from an abstract
(multi-)graph we can get cell structures for very different surfaces!

(Image from Zvonkin’s “Matrix Integrals and Map Enumeration”)



The count without labels

When are two embedded labeled graphs equal?

According to the integral, they are equal if they correspond to the
same diagram (combinatorial data).
Topologically, we are identifying labeled graphs that correspond
under orientation preserving homeomorphisms of the surface.

How many times does an unlabeled graph show up in the
count in the integral?

As many as there are ways to label it differently in such a way that
the new labeling gives a graphs which is no equivalent (different
combinatorial data). Note, it may happen that a re-labeling does
not change the coupling!.
One may call this multiplicity the size of the automorphism group
of the graph.
This number is NOT easy to compute!
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Back to the count

〈(
TrM4

)n〉
=

∑

couplings
of the 4n

indices in Mσ

∑

σ

〈C1〉 . . . 〈C2n〉

=

∞∑

F=1




number of
couplings

with F faces


 ·NF

=
∞∑

g=−∞




number of
couplings

of genus g


 ·N2−2g+n

=

∞∑

g=−∞




number of labeled
graphs with n

4-valent vertices embedded
in a (collection of)
genus g surface(s)



·N2−2g+n
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graphs with n

4-valent vertices embedded
in a (collection of)
genus g surface(s)



·N2−2g+n



The General Case (arbitrary valence)

Expectations of the form

〈(
TrM1

)n1
(
TrM2

)n2 . . . (TrMν)nν
〉
.

will correspond (via Wick’s lemma) to diagrams with n1 vertices of
valence 1, n2 vertices of valence 2 and so on.

The vertices are numbered by tuples

(a, b) = (vertex #, valence),

where b = 1, . . . , ν and a = 1, . . . , nb (it is understood that if
nj = 0 then there are no vertices of valence j), and around each
vertex we place the corresponding number of edges, and label the
vertex (a, b) clockwise by

i
(a,b)
1 , i

(a,b)
2 , . . . , i

(a,b)
b .
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i
(2,4)
1

i
(2,4)
1

i
(2,4)
2

i
(2,4)
2

i
(2,4)
3

i
(2,4)
3i

(2,4)
4

i
(2,4)
4

(2, 4)

Example: The second vertex of valence 4



By following the same arguments as above for the case of 4-valent
diagrams one may show that

〈(
TrM1

)n1
(
TrM2

)n2 . . . (TrMν)nν
〉

=

∞∑

F=1




number of
couplings

with F faces


·NF

or 〈
ν∏

j=1

(
TrM j

)nj
〉

=
∑

g∈Z
Ag,n1,...nνN

2−2g+ 1
2

∑
j(j−2)nj

where Ag,n1,...nν is the number of diagrams of genus g with nj
vertices which are j-valent.

The strange exponent in the N

I There are V =
∑
nj vertices, and E = 1

2

∑
jnj edges.

I 2− 2g = V − E + F gives F (the number of cycles in the
coupling or the diagram) in terms of the other quantities.
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The Generating Function

If we set

F (t1, . . . , tν) =
〈
exp

(
t1TrM1 + t2TrM2 + . . .+ tνTrMν

)〉
,

then we can recover all the expectations by noting that

∂n

∂tn1
1 . . . ∂tnνν

F

∣∣∣∣
t=0

=
〈(

TrM1
)n1
(
TrM2

)n2 . . . (TrMν)nν
〉
,

where we are interpreting the derivative of F as the formal
derivative under the integral sign.

Note: We are not claiming that F is differentiable at t = 0 (in
fact, sometimes F is undefined if t 6= 0), and this should just be
interpreted as a formal “packaging” of all the quantities〈(

TrM1
)n1
(
TrM2

)n2 . . . (TrMν)nν
〉
.
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Another way to interpret F (t1, . . . , tν) is to view it as the formal
generating function of the

〈(
TrM1

)n1
(
TrM2

)n2 . . . (TrMν)nν
〉

by
using the expansion of the exponential

exp(a1t1 + . . .+ aνtν) =
∑

n≥0

(a1t1 + . . .+ aνtν)n

n!

=
∑

n≥0

1

n!

∑

n1+...+nν=n

n!

n1! . . . nν !

∏
(ajtj)

nj

=
∑

n≥0

∑

n1+...+nν=n

∏ν
j=1 a

nj
j

n1! . . . nν !
tn1
1 . . . tnνν

=
∑

n1,...,nν≥0

∏ν
j=1 a

nj
j

n1! . . . nν !
tn1
1 . . . tnνν ,
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If we use this in the the integral in

F (t1, . . . , tν) =
〈
exp

(
t1TrM1 + t2TrM2 + . . .+ tνTrMν

)〉
,

and then formally commute integrals and sums we obtain

F (t1, . . . , tν)“ = ”
∑

n1,...,nν≥0

〈(
TrM1

)n1
(
TrM2
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〉

n1! . . . nν !
tn1
1 . . . tnνν

which again, just means that
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The Partition Function

I The partition function ZN (t) that appears in the papers in
not exactly F (t).

I F (t) is the generating function for

〈(
TrM1

)n1
(
TrM2

)n2 . . . (TrMν)nν
〉

=
∑

g∈Z
Ag,n1,...nνN

2−2g+ 1
2

∑
j(j−2)nj

I We clean up the exponents on the right by taking them to the
left

〈
ν∏

j=1

1

N
1
2
(j−2)nj

(
TrM j

)nj
〉

=
∑

g∈Z
Ag,n1,...nνN

2−2g

I And let ZN (−t) be the generating function of these Laurent
polynomials in N .
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The Partition Function

ẐN (t) =

〈
exp


−

ν∑

j=1

N−
1
2
(j−2)tjTrM j



〉
,

giving the formal expansion

ẐN (t)“ = ”
∑

n1,...,nν≥0
(−1)

∑
nj

〈∏ν
j=1N

− 1
2
(j−2) (TrM j

)nj〉

n1! . . . nν !
tn1
1 . . . tnνν

after expand with the Taylor series for the exponential.

Remember:
〈

ν∏

j=1

N−
1
2
(j−2) (TrM j

)nj
〉

=
∑

g∈Z
Ag,n1,...nνN

2−2g

where Ag,n1,...,nν is the number of diagrams of genus g with nj
vertices of valence j.
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The Partition Function

ẐN (t) =

∫
exp

(
−∑ν

j=1N
− 1

2
(j−2)tjTrM j

)
e−

1
2
TrM2

dM
∫
e−

1
2
TrM2

dM

Make the substitution M =
√
NM̂ in both integrals to obtain

(with M̂ instead of M , but I drop the hat below)

ẐN (t) =

∫
exp(−NTr(Vt(M)))dM∫
exp(−NTr(V0(M)))dM

where

Vt(M) =
1

2
M2 +

ν∑

j=1

tjM
j .



The magic of the log

log ẐN (t)“ = ”
∑

n1,...,nν≥0
(−1)

∑
nj
Pn1,...,nv(N)

n1! . . . nν !
tn1
1 . . . tnνν

then Pn1,...,nv(N) is the Laurent polynomial counting connected
g-diagrams with nj vertices which are j-valent! Explicitly:

Pn1,...,nv(N) =
∑

g≥0
Aconng,n1,...nνN

2−2g

where Aconng,n1,...nν is the number of connected g-diagrams with nj
vertices which are j-valent.

... Now reorder the sum on the right ...
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The Genus Expansion

1

N2
log ẐN (t)““ = ””

∑

g≥0
eg(t)

1

N2g
,

where

eg(t) =
∑

n1,...,nν≥0
(−1)

∑
nj
κg(n1, . . . , nν)

n1! . . . nν !
tn1
1 . . . tnνν

and κg(n1, . . . , nν) is the number of of connected labeled diagrams
of genus g with nj-vertices of valence j.



A Precise Mathematical Interpretation

1

N2
log ẐN (t)““ = ””

∑

g≥0
eg(t)

1

N2g
,

Ercolani and McLaughlin, 2003:

It ν is even, then there is a in cone Ω ⊆ Rν with vertex at the
origin for the t’s for which log ẐN (t) is a differentiable function of
t, and there is an N0 > 0 such that for all G > 0 there exists a
constant CG such that
∣∣∣∣

1

N2
log ẐN (t)−

(
e0(t) +

e1(t)

N2
+ . . .+

eG(t)

N2G

)∣∣∣∣ <
CG

N2G+2

for all t ∈ Ω and N > N0, and the same holds for the partial
derivatives of log ẐN (t) (with possibly different constants CG).

Note, this does not imply equality since the constant CG depends
on G. It does imply nonetheless that both quantities get closer as
N →∞ uniformly for t ∈ Ω and fixed G.
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